随机梯度上升法--一次仅用一个样本点来更新回归系数(因为可以在新样本到来时对分类器进行增量式更新,因而属于在线学习算法)

梯度上升法在每次更新回归系统时都需要遍历整个数据集,该方法在处理100个左右的数据集时尚可,但如果有数十亿样本和成千上万的特征,那么该方法的计算复杂度太高了。

随机梯度上升算法伪代码:

所有回归系数初始化为1

对数据集中每个样本

计算该样本的梯度

使用alpha*gradient更新回归系数值

返回回归系数值

def stocGradAscent0(dataMatrix, classLabels):
m,n = shape(dataMatrix)
alpha = 0.01
weights = ones(n) #initialize to all ones
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights

回归系数经过大量迭代才能达到稳定值,并且仍然有局部波动的现象。

对于随机梯度算法中存在的问题,可以通过改进的随机梯度上升算法来解决。

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = shape(dataMatrix)
weights = ones(n) #initialize to all ones
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4/(1.0+j+i)+0.0001 #apha decreases with iteration, does not
randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
index=dataIndex[randIndex]
h = sigmoid(sum(dataMatrix[index]*weights))
error = classLabels[index] - h
weights = weights + alpha * error * dataMatrix[index]
del(dataIndex[randIndex])
return weights

改进:

1.alpha在每次迭代的时候都会调整,这会缓解数据的波动或者高频波动。虽然alpha会随着迭代次数不断减小,但永远不会减到0,保证了新数据在多次迭代之后仍然具有一定的影响。

2.通过随机选取样本来更新回归系数。这种方法将减少周期性的波动。

05-25 21:09