关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明
对于第i项,假设为5
x^5=x^0*x^5
x^5=x^1*x^4
x^5=x^2*x^3
........
也就是说从k个这样(1+x+x^2+x^3+x^4+...)的式子中,每个式子取出一项出来
让其相乘,得到的x的指数为5.
所取出来看项,设为y,y的取值范围从0....(也就是数字1,即x^0)....到无限大,则归于
(y1+y2+y3+.....+yk)=i这个方程有多少组解
其中0<=yi<=i
通俗理解就是将数字i分成k份之和,有多少种分法
这个可用经典插板法进行求解
例如
(x+y+z)^7
有C(7+3-1,3-1)=C(9,2)种解
于是对于(y1+y2+y3+.....+yk)=i有C(i+k-1,k-1)组解

应用:

zz:https://www.cnblogs.com/maijing/p/4879012.html

先搞出各种食物的生成函数:

bzoj3028食物 关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明-LMLPHP

更详细的看这个:https://blog.csdn.net/wu_tongtong/article/details/78856565

05-11 20:42