研究内核源码和内核运行原理的时候,很总要的一点是要了解内核的初始情况,也就是要了解内核启动过程。我在研究内核的内存管理的时候,想知道内核启动后的页表的放置,页表的初始化等信息,这促使我这次仔细地研究内核的启动代码。
CPU在bootloader的帮助下将内核载入到了内存中,并开始执行。当然,bootloader必须为zImage做好必要的准备:
1. CPU 寄存器的设置: | R0=0; R1=Machine ID(即Machine Type Number,定义在linux/arch/arm/tools/mach-types); R2=内核启动参数在 RAM 中起始基地址; |
2. CPU 模式: | 必须禁止中断(IRQs和FIQs); CPU 必须 SVC 模式; |
3. Cache 和 MMU 的设置: | MMU 必须关闭; 指令 Cache 可以打开也可以关闭; 数据 Cache 必须关闭; |
知道内核zImage生成的朋友一定知道:真正的内核执行映像其实是在编译时生成arch/$(ARCH)/boot/文件夹中的Image文件(bin文件),而zImage其实是将这个可执行文件作为数据段包含在了自身中,而zImage的代码功能就是将这个数据(Image)正确地解压到编译时确定的位置中去,并跳到Image中运行。所以实现bootloader引导的压缩映像zImage的入口是由arch/arm /boot/compressed/vmlinux.lds决定的(这个文件是由vmlinux.lds.in生成的)。所以从vmlinux.lds.in中可以看出压缩映像的入口在哪:
- ......
- OUTPUT_ARCH(arm)
- ENTRY(_start)
- SECTIONS
- {
- /DISCARD/ : {
- *(.ARM.exidx*)
- *(.ARM.extab*)
- /*
- * Discard any r/w data - this produces a link error if we have any,
- * which is required for PIC decompression. Local data generates
- * GOTOFF relocations, which prevents it being relocated independently
- * of the text/got segments.
- */
- *(.data)
- }
- . = TEXT_START;
- _text = .;
- .text : {
- _start = .;
- *(.start)
- *(.text)
- ......
我们可以在arch/arm/boot/compressed/head.S找到这个start入口,这样就可以从这里开始用代码分析的方法研究bootloader跳转到压缩内核映像后的自解压启动过程:
再看到MMU设置的时候,我只研究了armv7的指令。看这些代码,必须对ARM的MMU有一定的了解,建议参考ARMv7的构架手册和网上的一份PDF《ARM MMU中文详解》(就是ARM手册中MMU部分的翻译)
- /*
- * linux/arch/arm/boot/compressed/head.S
- *
- * Copyright (C) 1996-2002 Russell King
- * Copyright (C) 2004 Hyok S. Choi (MPU support)
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include
- /*
- * 调试宏
- *
- * 注意:这些宏必须不包含那些非100%可重定位的代码
- * 任何试图这样做的结果是导致程序崩溃
- * 当打开调试时请选择以下一个使用
- */
- #ifdef DEBUG/* 调试宏-中间层 */
- #if defined(CONFIG_DEBUG_ICEDCC)/* 使用内部调试协处理器CP14 */
- #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K) || defined(CONFIG_CPU_V7)
- .macroloadsp, rb, tmp
- .endm
- .macrowriteb, ch, rb
- mcrp14, 0, \ch, c0, c5, 0
- .endm
- #elif defined(CONFIG_CPU_XSCALE)
- .macroloadsp, rb, tmp
- .endm
- .macrowriteb, ch, rb
- mcrp14, 0, \ch, c8, c0, 0
- .endm
- #else
- .macroloadsp, rb, tmp
- .endm
- .macrowriteb, ch, rb
- mcrp14, 0, \ch, c1, c0, 0
- .endm
- #endif
- #else/* 使用串口作为调试通道 */
- #include /* 包含构架相关的的调试宏的汇编文件 调试宏-底层 */
- .macrowriteb,ch, rb
- senduart \ch, \rb
- .endm
- #if defined(CONFIG_ARCH_SA1100)
- .macroloadsp, rb, tmp
- mov\rb, #0x80000000@ physical base address
- #ifdef CONFIG_DEBUG_LL_SER3
- add\rb, \rb, #0x00050000@ Ser3
- #else
- add\rb, \rb, #0x00010000@ Ser1
- #endif
- .endm
- #elif defined(CONFIG_ARCH_S3C2410)
- .macro loadsp, rb, tmp
- mov\rb, #0x50000000
- add\rb, \rb, #0x4000 * CONFIG_S3C_LOWLEVEL_UART_PORT
- .endm
- #else
- .macroloadsp,rb, tmp
- addruart \rb, \tmp
- .endm
- #endif
- #endif
- #endif/* DEBUG */
- /* 调试宏-上层 */
- .macrokputc,val/* 打印字符 */
- movr0, \val
- blputc
- .endm
- .macrokphex,val,len/* 打印十六进制数 */
- movr0, \val
- movr1, #\len
- blphex
- .endm
- .macrodebug_reloc_start/* 重定位内核调试宏-开始 */
- #ifdef DEBUG
- kputc#'\n'
- kphexr6, 8/* 处理器 id */
- kputc#':'
- kphexr7, 8/* 构架 id */
- #ifdef CONFIG_CPU_CP15
- kputc#':'
- mrcp15, 0, r0, c1, c0
- kphexr0, 8/* 控制寄存器 */
- #endif
- kputc#'\n'
- kphexr5, 8/* 解压后的内核起始地址 */
- kputc#'-'
- kphexr9, 8/* 解压后的内核结束地址 */
- kputc#'>'
- kphexr4, 8/* 内核执行地址 */
- kputc#'\n'
- #endif
- .endm
- .macrodebug_reloc_end/* 重定位内核调试宏-结束 */
- #ifdef DEBUG
- kphexr5, 8/* 内核结束地址 */
- kputc#'\n'
- movr0, r4
- blmemdump/* 打印内核起始处 256 字节 */
- #endif
- .endm
- .section ".start", #alloc, #execinstr
- /*
- * 清理不同的调用约定
- */
- .align
- .arm@ 启动总是进入ARM状态
- start:
- .typestart,#function
- .rept7
- movr0, r0
- .endr
- ARM(movr0, r0)
- ARM(b1f)
- THUMB(adrr12, BSYM(1f))
- THUMB(bxr12)
- .word0x016f2818@ 用于boot loader的魔数
- .wordstart@ 加载/运行zImage的绝对地址(编译时确定)
- .word_edata@ zImage结束地址
- THUMB(.thumb)
- 1:movr7, r1@ 保存构架ID到r7(此前由bootloader放入r1)
- movr8, r2@ 保存内核启动参数地址到r8(此前由bootloader放入r2)
- #ifndef __ARM_ARCH_2__
- /*
- * 通过Angel调试器启动 - 必须进入 SVC模式且关闭FIQs/IRQs
- * (numeric definitions from angel arm.h source).
- * 如果进入时在user模式下,我们只需要做这些
- */
- mrsr2, cpsr@ 获取当前模式
- tstr2, #3@ 判断是否是user模式
- bnenot_angel
- movr0, #0x17@ angel_SWIreason_EnterSVC
- ARM(swi0x123456)@ angel_SWI_ARM
- THUMB(svc0xab)@ angel_SWI_THUMB
- not_angel:
- mrsr2, cpsr@ 关闭中断
- orrr2, r2, #0xc0@ 以保护调试器的运作
- msrcpsr_c, r2
- #else
- teqppc, #0x0c000003@ 关闭中断(此外bootloader已设置模式为SVC)
- #endif
- /*
- * 注意一些缓存的刷新和其他事务可能需要在这里完成
- * - is there an Angel SWI call for this?
- */
- /*
- * 一些构架的特定代码可以在这里被连接器插入,
- * 但是不应使用 r7(保存构架ID), r8(保存内核启动参数地址), and r9.
- */
- .text
- /*
- * 此处确定解压后的内核映像的绝对地址(物理地址),保存于r4
- * 由于配置的不同可能有的结果
- * (1)定义了CONFIG_AUTO_ZRELADDR
- * ZRELADDR是已解压内核最终存放的物理地址
- * 如果AUTO_ZRELADDR被选择了, 这个地址将会在运行是确定:
- * 将当pc值和0xf8000000做与操作,
- * 并加上TEXT_OFFSET(内核最终存放的物理地址与内存起始的偏移)
- * 这里假定zImage被放在内存开始的128MB内
- * (2)没有定义CONFIG_AUTO_ZRELADDR
- * 直接使用zreladdr(此值位于arch/arm/mach-xxx/Makefile.boot文件确定)
- */
- #ifdef CONFIG_AUTO_ZRELADDR
- @ 确定内核映像地址
- movr4, pc
- andr4, r4, #0xf8000000
- addr4, r4, #TEXT_OFFSET
- #else
- ldrr4, =zreladdr
- #endif
- blcache_on/* 开启缓存(以及MMU) */
- restart:adrr0, LC0
- ldmiar0, {r1, r2, r3, r6, r10, r11, r12}
- ldrsp, [r0, #28]
- /*
- * 我们可能运行在一个与编译时定义的不同地址上,
- * 所以我们必须修正变量指针
- */
- subr0, r0, r1@ 计算偏移量
- addr6, r6, r0@ 重新计算_edata
- addr10, r10, r0@ 重新获得压缩后的内核大小数据位置
- /*
- * 内核编译系统将解压后的内核大小数据
- * 以小端格式
- * 附加在压缩数据的后面(其实是“gzip -f -9”命令的结果)
- * 下面代码的作用是将解压后的内核大小数据正确地放入r9中(避免了大小端问题)
- */
- ldrbr9, [r10, #0]
- ldrblr, [r10, #1]
- orrr9, r9, lr, lsl #8
- ldrblr, [r10, #2]
- ldrbr10, [r10, #3]
- orrr9, r9, lr, lsl #16
- orrr9, r9, r10, lsl #24
- /*
- * 下面代码的作用是将正确的当前执行映像的结束地址放入r10
- */
- #ifndef CONFIG_ZBOOT_ROM
- /* malloc 获取的内存空间位于重定向的栈指针之上 (64k max) */
- addsp, sp, r0
- addr10, sp, #0x10000
- #else
- /*
- * 如果定义了 ZBOOT_ROM, bss/stack 是非可重定位的,
- * 但有些人依然可以将其放在RAM中运行,
- * 这时我们可以参考 _edata.
- */
- movr10, r6
- #endif
- /*
- * 检测我们是否会发生自我覆盖的问题
- * r4 = 解压后的内核起始地址(最终执行位置)
- * r9 = 解压后内核的大小
- * r10 = 当前执行映像的结束地址, 包含了 bss/stack/malloc 空间(假设是非XIP执行的)
- * 我们的基本需求是:
- * (若最终执行位置r4在当前映像之后)r4 - 16k 页目录 >= r10 -> OK
- * (若最终执行位置r4在当前映像之前)r4 + 解压后的内核大小 <= 当前位置 (pc) -> OK
- * 如果上面的条件不满足,就会自我覆盖,必须先搬运当前映像
- */
- addr10, r10, #16384
- cmpr4, r10 @ 假设最终执行位置r4在当前映像之后
- bhswont_overwrite
- addr10, r4, r9 @ 假设最终执行位置r4在当前映像之前
- ARM(cmpr10, pc) @ r10 = 解压后的内核结束地址
- THUMB(movlr, pc)
- THUMB(cmpr10, lr)
- blswont_overwrite
- /*
- * 将当前的映像重定向到解压后的内核之后(会发生自我覆盖时才执行,否则就被跳过)
- * r6 = _edata(已校正)
- * r10 = 解压后的内核结束地址
- * 因为我们要把当前映像向后移动, 所以我们必须由后往前复制代码,
- * 以防原数据和目标数据的重叠
- */
- /*
- * 将解压后的内核结束地址r10扩展(reloc_code_end - restart),
- * 并对齐到下一个256B边界。
- * 这样避免了当搬运的偏移较小时的自我覆盖
- */
- addr10, r10, #((reloc_code_end - restart + 256) & ~255)
- bicr10, r10, #255
- /* 获取需要搬运的当前映像的起始位置r5,并向下做32B对齐. */
- adrr5, restart
- bicr5, r5, #31
- subr9, r6, r5@ _edata - restart(已向下对齐)= 需要搬运的大小
- addr9, r9, #31
- bicr9, r9, #31@ 做32B对齐 ,r9 = 需要搬运的大小
- addr6, r9, r5@ r6 = 当前映像需要搬运的结束地址
- addr9, r9, r10@ r9 = 当前映像搬运的目的地的结束地址
- /* 搬运当前执行映像,不包含 bss/stack/malloc 空间*/
- 1:ldmdbr6!, {r0 - r3, r10 - r12, lr}
- cmpr6, r5
- stmdbr9!, {r0 - r3, r10 - r12, lr}
- bhi1b
- /* 保存偏移量,用来修改sp和实现代码跳转 */
- subr6, r9, r6
- #ifndef CONFIG_ZBOOT_ROM
- /* cache_clean_flush 可能会使用栈,所以重定向sp指针 */
- addsp, sp, r6
- #endif
- blcache_clean_flush@ 刷新缓存
- /* 通过搬运的偏移和当前的实际 restart 地址来实现代码跳转*/
- adrr0, BSYM(restart)
- addr0, r0, r6
- movpc, r0
- /* 在上面的跳转之后,程序又从restart开始。
- * 但这次在检查自我覆盖的时候,新的执行位置必然满足
- * 最终执行位置r4在当前映像之前,r4 + 压缩后的内核大小 <= 当前位置 (pc)
- * 所以必然直接跳到了下面的wont_overwrite执行
- */
- wont_overwrite:
- /*
- * 如果delta(当前映像地址与编译时的地址偏移)为0, 我们运行的地址就是编译时确定的地址.
- * r0 = delta
- * r2 = BSS start(编译值)
- * r3 = BSS end(编译值)
- * r4 = 内核最终运行的物理地址
- * r7 = 构架ID(bootlodaer传递值)
- * r8 = 内核启动参数指针(bootlodaer传递值)
- * r11 = GOT start(编译值)
- * r12 = GOT end(编译值)
- * sp = stack pointer(修正值)
- */
- teqr0, #0@测试delta值
- beqnot_relocated@如果delta为0,无须对GOT表项和BSS进行重定位
- addr11, r11, r0@重定位GOT start
- addr12, r12, r0@重定位GOT end
- #ifndef CONFIG_ZBOOT_ROM
- /*
- * 如果内核配置 CONFIG_ZBOOT_ROM = n,
- * 我们必须修正BSS段的指针
- * 注意:sp已经被修正
- */
- addr2, r2, r0@重定位BSS start
- addr3, r3, r0@重定位BSS end
- /*
- * 重定位所有GOT表的入口项
- */
- 1:ldrr1, [r11, #0]@ 重定位GOT表的入口项
- addr1, r1, r0@ 这个修正了 C 引用
- strr1, [r11], #4
- cmpr11, r12
- blo1b
- #else
- /*
- * 重定位所有GOT表的入口项.
- * 我们只重定向在(已重定向后)BSS段外的入口
- */
- 1:ldrr1, [r11, #0]@ 重定位GOT表的入口项
- cmpr1, r2@ entry < bss_start ||
- cmphsr3, r1@ _end < entry table
- addlor1, r1, r0@ 这个修正了 C 引用
- strr1, [r11], #4
- cmpr11, r12
- blo1b
- #endif
- /*
- * 至此当前映像的搬运和调整已经完成
- * 可以开始真正的工作的
- */
- not_relocated:movr0, #0
- 1:strr0, [r2], #4@ 清零 bss(初始化BSS段)
- strr0, [r2], #4
- strr0, [r2], #4
- strr0, [r2], #4
- cmpr2, r3
- blo1b
- /*
- * C运行时环境已经充分建立.
- * 设置一些指针就可以解压内核了.
- * r4 = 内核最终运行的物理地址
- * r7 = 构架ID
- * r8 = 内核启动参数指针
- *
- * 下面对r0~r3的配置是decompress_kernel函数对应参数
- * r0 = 解压后的输出位置首地址
- * r1 = 可用RAM空间首地址
- * r2 = 可用RAM空间结束地址
- * r3 = 构架ID
- * 就是这个decompress_kernel(C函数)输出了"Uncompressing Linux..."
- * 以及" done, booting the kernel.\n"
- */
- movr0, r4
- movr1, sp@ malloc 获取的内存空间位于栈指针之上
- addr2, sp, #0x10000@ 64k max
- movr3, r7
- bldecompress_kernel
- /*
- * decompress_kernel(misc.c)--调用-->
- * do_decompress(decompress.c)--调用-->
- * decompress(../../../../lib/decompress_xxxx.c根据压缩方式的配置而不同)
- */
- /*
- * 以下是为跳入解压后的内核,再次做准备(恢复解压前的状态)
- */
- blcache_clean_flush
- blcache_off@ 数据缓存必须关闭(内核的要求)
- movr0, #0@ r0必须为0
- movr1, r7@ 恢复构架ID到r1
- movr2, r8@ 恢复内核启动参数指针到r2
- movpc, r4@ 跳入解压后的内核映像(Image)入口(arch/arm/kernel/head.S)
- /*
- * 以下是为了确定当前运行时的地址和编译时确定的地址偏差,
- * 而将编译时确定的映像数据保存如下,用于检测对比
- */
- .align2
- .typeLC0, #object
- LC0:.wordLC0@ r1
- .word__bss_start@ r2
- .word_end@ r3
- .word_edata@ r6
- .wordinput_data_end - 4@ r10 (inflated size location)
- .word_got_start@ r11
- .word_got_end@ ip
- .word.L_user_stack_end@ sp
- .sizeLC0, . - LC0
- #ifdef CONFIG_ARCH_RPC
- .globlparams
- params:ldrr0, =0x10000100@ params_phys for RPC
- movpc, lr
- .ltorg
- .align
- #endif
- /*
- * 开启缓存.
- * 我们必须创建页表(并开启MMU)才可以开启数据和指令缓存。
- * 我们把页表(节描述符)放在内核执行地址前16k(0x4000)的空间中,
- * 且我们希望没人会去用这段地址空间.
- * 如果我们使用了,可能会出问题的!
- *
- * 进入时,
- * r4 = 内核最终运行的物理地址
- * r7 = 构架ID
- * r8 = 内核启动参数指针
- * 退出时,
- * r0, r1, r2, r3, r9, r10, r12 被修改
- * 此例程必须保护:
- * r4, r7, r8
- */
- .align5
- cache_on:movr3, #8@ 调用cache_on 函数
- bcall_cache_fn
- /*
- * Initialize the highest priority protection region, PR7
- * to cover all 32bit address and cacheable and bufferable.
- */
- __armv4_mpu_cache_on:
- movr0, #0x3f@ 4G, the whole
- mcrp15, 0, r0, c6, c7, 0@ PR7 Area Setting
- mcr p15, 0, r0, c6, c7, 1
- movr0, #0x80@ PR7
- mcrp15, 0, r0, c2, c0, 0@ D-cache on
- mcrp15, 0, r0, c2, c0, 1@ I-cache on
- mcrp15, 0, r0, c3, c0, 0@ write-buffer on
- movr0, #0xc000
- mcrp15, 0, r0, c5, c0, 1@ I-access permission
- mcrp15, 0, r0, c5, c0, 0@ D-access permission
- movr0, #0
- mcrp15, 0, r0, c7, c10, 4@ drain write buffer
- mcrp15, 0, r0, c7, c5, 0@ flush(inval) I-Cache
- mcrp15, 0, r0, c7, c6, 0@ flush(inval) D-Cache
- mrcp15, 0, r0, c1, c0, 0@ read control reg
- @ ...I .... ..D. WC.M
- orrr0, r0, #0x002d@ .... .... ..1. 11.1
- orrr0, r0, #0x1000@ ...1 .... .... ....
- mcrp15, 0, r0, c1, c0, 0@ write control reg
- movr0, #0
- mcrp15, 0, r0, c7, c5, 0@ flush(inval) I-Cache
- mcrp15, 0, r0, c7, c6, 0@ flush(inval) D-Cache
- movpc, lr
- __armv3_mpu_cache_on:
- movr0, #0x3f@ 4G, the whole
- mcrp15, 0, r0, c6, c7, 0@ PR7 Area Setting
- movr0, #0x80@ PR7
- mcrp15, 0, r0, c2, c0, 0@ cache on
- mcrp15, 0, r0, c3, c0, 0@ write-buffer on
- movr0, #0xc000
- mcrp15, 0, r0, c5, c0, 0@ access permission
- movr0, #0
- mcrp15, 0, r0, c7, c0, 0@ invalidate whole cache v3
- /*
- * ?? ARMv3 MMU does not allow reading the control register,
- * does this really work on ARMv3 MPU?
- */
- mrcp15, 0, r0, c1, c0, 0@ read control reg
- @ .... .... .... WC.M
- orrr0, r0, #0x000d@ .... .... .... 11.1
- /* ?? this overwrites the value constructed above? */
- movr0, #0
- mcrp15, 0, r0, c1, c0, 0@ write control reg
- /* ?? invalidate for the second time? */
- mcrp15, 0, r0, c7, c0, 0@ invalidate whole cache v3
- movpc, lr
- /*
- * 初始化MMU页表
- * 内核最终运行的物理地址向下16K的空间
- * 存放可以寻址4G空间节描述符
- * (16KB/4B=4K个描述符,每个描述符映射1MB空间,4K*1MB = 4GB)
- * 进入时,
- * r4 = 内核最终运行的物理地址
- * r7 = 构架ID
- * r8 = 内核启动参数指针
- * 退出时,
- * r0, r1, r2, r3, r9, r10 被修改
- * 此例程必须保护:
- * r4, r7, r8
- */
- __setup_mmu:subr3, r4, #16384@ 页目录大小为16K
- bicr3, r3, #0xff@ 页目录指针向下对齐
- bicr3, r3, #0x3f00@ 对齐方式-16KB
- /*
- * 对于这个对齐,是MMU硬件的要求
- * 转换表基址寄存器(CP15的寄存器2)保存着第一级转换表基址的物理地址。
- * 只有bits[31:14]有效,bits[13:0]应该是零(SBZ)。
- * 所以第一级表必须16KB对齐。
- */
- /*
- * 初始化页表, 仅针对RAM(最大到256MB)开启
- * 缓存(cacheable)和缓冲(bufferable)位
- * r3 = 页目录基址(内核最终运行的物理地址向下16K的位置)
- */
- movr0, r3@ 页目录指针给r0
- movr9, r0, lsr #18
- movr9, r9, lsl #18@ 通过移位清零低18bit,得到RAM基地址(推测值,r9)
- addr10, r9, #0x10000000@ 加一个合理的RAM大小(猜测值) = RAM结束地址(猜测值,r10)
- movr1, #0x12
- orrr1, r1, #3 << 10@ 初始化节描述符r1 = 0b110000010010(完全访问:0域:XN:节)
- addr2, r3, #16384@ r2 = 内核最终运行的物理地址(可能)
- 1:cmpr1, r9@ if virt > start of RAM(针对RAM开启缓存和缓冲)
- #ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
- orrhsr1, r1, #0x08@ 设置 cacheable
- #else
- orrhsr1, r1, #0x0c@ 设置 cacheable, bufferable
- #endif
- cmpr1, r10@ if virt > end of RAM
- bichsr1, r1, #0x0c@ 清除 cacheable, bufferable
- strr1, [r0], #4@ 设置节描述符-1:1 映射(虚拟地址 == 物理地址)
- addr1, r1, #1048576@ r1 + 1MB(每节管理的地址长度)下一个节描述符
- teqr0, r2
- bne1b
- /*
- * 如果我们在flash中运行, 那么我们一定要为我们当前的代码开启缓存。
- * 我们映射2MB的代码,
- * 所以对于多达1MB压缩的内核没有映射重叠的问题??
- * 如果我们在RAM中运行, 那么我们只需要完成上面的工作即可,下面重复了.
- */
- movr1, #0x1e
- orrr1, r1, #3 << 10@ 初始化节描述符r1 = 0b110000011110(完全访问:0域:XN:cacheable:bufferable:节)
- movr2, pc
- movr2, r2, lsr #20@ 当前执行地址的节基址
- orrr1, r1, r2, lsl #20@ 生成节描述符
- addr0, r3, r2, lsl #2@ 获得页目录中相应的入口
- strr1, [r0], #4@ 设置节描述符-1:1 映射(虚拟地址 == 物理地址)
- addr1, r1, #1048576@ r1 + 1MB(每节管理的地址长度)下一个节描述符
- strr1, [r0]@ 设置节描述符(只做2MB映射)
- movpc, lr
- ENDPROC(__setup_mmu)
- __arm926ejs_mmu_cache_on:
- #ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
- movr0, #4@ put dcache in WT mode
- mcrp15, 7, r0, c15, c0, 0
- #endif
- __armv4_mmu_cache_on:
- movr12, lr
- #ifdef CONFIG_MMU
- bl__setup_mmu
- movr0, #0
- mcrp15, 0, r0, c7, c10, 4@ drain write buffer
- mcrp15, 0, r0, c8, c7, 0@ flush I,D TLBs
- mrcp15, 0, r0, c1, c0, 0@ read control reg
- orrr0, r0, #0x5000@ I-cache enable, RR cache replacement
- orrr0, r0, #0x0030
- #ifdef CONFIG_CPU_ENDIAN_BE8
- orrr0, r0, #1 << 25@ big-endian page tables
- #endif
- bl__common_mmu_cache_on
- movr0, #0
- mcrp15, 0, r0, c8, c7, 0@ flush I,D TLBs
- #endif
- movpc, r12
- __armv7_mmu_cache_on:
- movr12, lr@保存lr到r12
- #ifdef CONFIG_MMU
- mrcp15, 0, r11, c0, c1, 4@ 读取CP15的ID_MMFR0(内存模块特性)寄存器
- tstr11, #0xf@ 测试VMSA(虚拟内存系统构架)A8 = 0x3
- blne__setup_mmu@ 如果VMSA不是0xf,就进入mmu页表初始化(节模式)
- movr0, #0
- mcrp15, 0, r0, c7, c10, 4@ 数据内存屏障(保证上面的写操作完成才继续)
- tstr11, #0xf@ 测试VMSA(虚拟内存系统构架)A8 = 0x3
- mcrnep15, 0, r0, c8, c7, 0@ flush I,D TLBs缓存
- #endif
- mrcp15, 0, r0, c1, c0, 0@ 读系统控制寄存器
- orrr0, r0, #0x5000@ I-cache 使能, RR cache replacement
- orrr0, r0, #0x003c@ write buffer
- #ifdef CONFIG_MMU
- #ifdef CONFIG_CPU_ENDIAN_BE8
- orrr0, r0, #1 << 25@ 大端模式页表
- #endif
- orrner0, r0, #1@ 设置MMU 开启位
- movner1, #-1
- mcrnep15, 0, r3, c2, c0, 0@ 载入页表基址到TTBR0
- mcrnep15, 0, r1, c3, c0, 0@ 载入域访问控制数据到DACR(所有域都是Manager,所以XN会被忽略)
- #endif
- mcrp15, 0, r0, c1, c0, 0@ 写系统控制寄存器
- mrcp15, 0, r0, c1, c0, 0@ 回读系统控制寄存器
- movr0, #0
- mcrp15, 0, r0, c7, c5, 4@ 指令同步屏障(确保上面指令完成才返回)
- movpc, r12@ 此处返回(此时MMU已启用,RAM缓存已开启)
- __fa526_cache_on:
- movr12, lr
- bl__setup_mmu
- movr0, #0
- mcrp15, 0, r0, c7, c7, 0@ Invalidate whole cache
- mcrp15, 0, r0, c7, c10, 4@ drain write buffer
- mcrp15, 0, r0, c8, c7, 0@ flush UTLB
- mrcp15, 0, r0, c1, c0, 0@ read control reg
- orrr0, r0, #0x1000@ I-cache enable
- bl__common_mmu_cache_on
- movr0, #0
- mcrp15, 0, r0, c8, c7, 0@ flush UTLB
- movpc, r12
- __arm6_mmu_cache_on:
- movr12, lr
- bl__setup_mmu
- movr0, #0
- mcrp15, 0, r0, c7, c0, 0@ invalidate whole cache v3
- mcrp15, 0, r0, c5, c0, 0@ invalidate whole TLB v3
- movr0, #0x30
- bl__common_mmu_cache_on
- movr0, #0
- mcrp15, 0, r0, c5, c0, 0@ invalidate whole TLB v3
- movpc, r12
- __common_mmu_cache_on:
- #ifndef CONFIG_THUMB2_KERNEL
- #ifndef DEBUG
- orrr0, r0, #0x000d@ Write buffer, mmu
- #endif
- movr1, #-1
- mcrp15, 0, r3, c2, c0, 0@ load page table pointer
- mcrp15, 0, r1, c3, c0, 0@ load domain access control
- b1f
- .align5@ cache line aligned
- 1:mcrp15, 0, r0, c1, c0, 0@ load control register
- mrcp15, 0, r0, c1, c0, 0@ and read it back to
- subpc, lr, r0, lsr #32@ properly flush pipeline
- #endif
- #define PROC_ENTRY_SIZE (4*5)
- /*
- * 这里是为不同的处理器提供遵循可重定向缓存支持的函数
- * 这是一个通用的为 定位入口 和 跳入一个(从块起始处到)特定偏移的指令 的钩子函数。
- * 请注意这是一个位置无关代码。
- *
- * r1 = 被修改
- * r2 = 被修改
- * r3 = 相对每个入口的功能函数位置偏移(on:#08|off:#12|flush:#16)
- * r9 = 被修改
- * r12 = 被修改
- */
- call_cache_fn:adrr12, proc_types
- #ifdef CONFIG_CPU_CP15
- mrcp15, 0, r9, c0, c0@ 动态获取处理器ID
- #else
- ldrr9, =CONFIG_PROCESSOR_ID@ 使用预编译的处理器ID
- #endif
- 1:ldrr1, [r12, #0]@ 获取ID值
- ldrr2, [r12, #4]@ 获取对应的掩码
- eorr1, r1, r9@ (real ^ match) 检测是否匹配
- tstr1, r2@ & mask 将检测结果做掩码
- ARM(addeqpc, r12, r3) @ 如果匹配就调用缓存函数
- THUMB(addeqr12, r3)
- THUMB(moveqpc, r12) @ call cache function
- addr12, r12, #PROC_ENTRY_SIZE@ 如果不匹配就跳过这个入口,进入下个测试
- b1b
- /*
- * 缓存操作表. 这些是最基本的:
- * - CPU ID 匹配
- * - CPU ID 掩码
- * - 'cache on' 方法代码
- * - 'cache off' 方法代码
- * - 'cache flush' 方法代码
- *
- * 我们通过这个公式匹配入口: ((real_id ^ match) & mask) == 0
- *
- * 写通式缓存一般只需要 'on' 和 'off' 方法
- * 回写式缓存必须有 flush 方法定义
- *
- */
- .align2
- .typeproc_types,#object
- proc_types:
- .word0x41560600@ ARM6/610
- .word0xffffffe0
- W(b)__arm6_mmu_cache_off@ 可以使用但是较慢
- W(b)__arm6_mmu_cache_off
- movpc, lr
- THUMB(nop)
- @b__arm6_mmu_cache_on@ 未测试
- @b__arm6_mmu_cache_off
- @b__armv3_mmu_cache_flush
- .word0x00000000@ old ARM ID
- .word0x0000f000
- movpc, lr
- THUMB(nop)
- movpc, lr
- THUMB(nop)
- movpc, lr
- THUMB(nop)
- .word0x41007000@ ARM7/710
- .word0xfff8fe00
- W(b)__arm7_mmu_cache_off
- W(b)__arm7_mmu_cache_off
- movpc, lr
- THUMB(nop)
- .word0x41807200@ ARM720T (写通式)
- .word0xffffff00
- W(b)__armv4_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- movpc, lr
- THUMB(nop)
- .word0x41007400@ ARM74x
- .word0xff00ff00
- W(b)__armv3_mpu_cache_on
- W(b)__armv3_mpu_cache_off
- W(b)__armv3_mpu_cache_flush
- .word0x41009400@ ARM94x
- .word0xff00ff00
- W(b)__armv4_mpu_cache_on
- W(b)__armv4_mpu_cache_off
- W(b)__armv4_mpu_cache_flush
- .word0x41069260@ ARM926EJ-S (v5TEJ)
- .word0xff0ffff0
- W(b)__arm926ejs_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__armv5tej_mmu_cache_flush
- .word0x00007000@ ARM7 IDs
- .word0x0000f000
- movpc, lr
- THUMB(nop)
- movpc, lr
- THUMB(nop)
- movpc, lr
- THUMB(nop)
- @ 以下使用新的 ID 系统.
- .word0x4401a100@ sa110 / sa1100
- .word0xffffffe0
- W(b)__armv4_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__armv4_mmu_cache_flush
- .word0x6901b110@ sa1110
- .word0xfffffff0
- W(b)__armv4_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__armv4_mmu_cache_flush
- .word0x56056900
- .word0xffffff00@ PXA9xx
- W(b)__armv4_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__armv4_mmu_cache_flush
- .word0x56158000@ PXA168
- .word0xfffff000
- W(b)__armv4_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__armv5tej_mmu_cache_flush
- .word0x56050000@ Feroceon
- .word0xff0f0000
- W(b)__armv4_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__armv5tej_mmu_cache_flush
- #ifdef CONFIG_CPU_FEROCEON_OLD_ID
- /* this conflicts with the standard ARMv5TE entry */
- .long0x41009260@ Old Feroceon
- .long0xff00fff0
- b__armv4_mmu_cache_on
- b__armv4_mmu_cache_off
- b__armv5tej_mmu_cache_flush
- #endif
- .word0x66015261@ FA526
- .word0xff01fff1
- W(b)__fa526_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__fa526_cache_flush
- @ 这些匹配构架ID
- .word0x00020000@ ARMv4T
- .word0x000f0000
- W(b)__armv4_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__armv4_mmu_cache_flush
- .word0x00050000@ ARMv5TE
- .word0x000f0000
- W(b)__armv4_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__armv4_mmu_cache_flush
- .word0x00060000@ ARMv5TEJ
- .word0x000f0000
- W(b)__armv4_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__armv5tej_mmu_cache_flush
- .word0x0007b000@ ARMv6
- .word0x000ff000
- W(b)__armv4_mmu_cache_on
- W(b)__armv4_mmu_cache_off
- W(b)__armv6_mmu_cache_flush
- .word0x000f0000@ new CPU Id
- .word0x000f0000
- W(b)__armv7_mmu_cache_on
- W(b)__armv7_mmu_cache_off
- W(b)__armv7_mmu_cache_flush
- .word0@ 未识别类型
- .word0
- movpc, lr
- THUMB(nop)
- movpc, lr
- THUMB(nop)
- movpc, lr
- THUMB(nop)
- .sizeproc_types, . - proc_types
- /*
- * 如果你获得了一个 "非常量的表达式".如果汇编器从这行返回" 申明"错误
- * 请检查下你是否偶尔在应该使用“W(b)”的地方写了"b"指令
- * 这是一个缓存方法跳转表的对齐检查机制
- * 在写汇编的时候可以借鉴
- */
- .if (. - proc_types) % PROC_ENTRY_SIZE != 0
- .error "The size of one or more proc_types entries is wrong."
- .endif
- /*
- * 关闭缓存和MMU. ARMv3不支持控制寄存器的读取,
- * 但ARMv4支持.
- *
- * 在退出时,
- * r0, r1, r2, r3, r9, r12 被篡改
- * 这个例程必须保护:
- * r4, r7, r8
- */
- .align5
- cache_off:movr3, #12@ 缓存关闭函数
- bcall_cache_fn
- __armv4_mpu_cache_off:
- mrcp15, 0, r0, c1, c0
- bicr0, r0, #0x000d
- mcrp15, 0, r0, c1, c0@ turn MPU and cache off
- movr0, #0
- mcrp15, 0, r0, c7, c10, 4@ drain write buffer
- mcrp15, 0, r0, c7, c6, 0@ flush D-Cache
- mcrp15, 0, r0, c7, c5, 0@ flush I-Cache
- movpc, lr
- __armv3_mpu_cache_off:
- mrcp15, 0, r0, c1, c0
- bicr0, r0, #0x000d
- mcrp15, 0, r0, c1, c0, 0@ turn MPU and cache off
- movr0, #0
- mcrp15, 0, r0, c7, c0, 0@ invalidate whole cache v3
- movpc, lr
- __armv4_mmu_cache_off:
- #ifdef CONFIG_MMU
- mrcp15, 0, r0, c1, c0
- bicr0, r0, #0x000d
- mcrp15, 0, r0, c1, c0@ turn MMU and cache off
- movr0, #0
- mcrp15, 0, r0, c7, c7@ invalidate whole cache v4
- mcrp15, 0, r0, c8, c7@ invalidate whole TLB v4
- #endif
- movpc, lr
- __armv7_mmu_cache_off:
- mrcp15, 0, r0, c1, c0@ 读取系统控制寄存器SCTLR
- #ifdef CONFIG_MMU
- bicr0, r0, #0x000d@ 清零MMU和cache使能位
- #else
- bicr0, r0, #0x000c@ 清零cache使能位
- #endif
- mcrp15, 0, r0, c1, c0@ 关闭MMU和cache
- movr12, lr@ 保存lr到r12
- bl__armv7_mmu_cache_flush
- movr0, #0
- #ifdef CONFIG_MMU
- mcrp15, 0, r0, c8, c7, 0@ 废止整个TLB
- #endif
- mcrp15, 0, r0, c7, c5, 6@ 废止BTC
- mcrp15, 0, r0, c7, c10, 4@ 数据同步屏障
- mcrp15, 0, r0, c7, c5, 4@ 指令同步屏障(确保上面指令完成才返回)
- movpc, r12
- __arm6_mmu_cache_off:
- movr0, #0x00000030@ ARM6 control reg.
- b__armv3_mmu_cache_off
- __arm7_mmu_cache_off:
- movr0, #0x00000070@ ARM7 control reg.
- b__armv3_mmu_cache_off
- __armv3_mmu_cache_off:
- mcrp15, 0, r0, c1, c0, 0@ turn MMU and cache off
- movr0, #0
- mcrp15, 0, r0, c7, c0, 0@ invalidate whole cache v3
- mcrp15, 0, r0, c5, c0, 0@ invalidate whole TLB v3
- movpc, lr
- /*
- * 清空和flush缓存以保持一致性
- *
- * 退出时,
- * r1, r2, r3, r9, r10, r11, r12 被篡改
- * 这个例程必须保护:
- * r4, r6, r7, r8
- */
- .align5
- cache_clean_flush:
- movr3, #16
- bcall_cache_fn
- __armv4_mpu_cache_flush:
- movr2, #1
- movr3, #0
- mcrp15, 0, ip, c7, c6, 0@ invalidate D cache
- movr1, #7 << 5@ 8 segments
- 1:orrr3, r1, #63 << 26@ 64 entries
- 2:mcrp15, 0, r3, c7, c14, 2@ clean & invalidate D index
- subsr3, r3, #1 << 26
- bcs2b@ entries 63 to 0
- subs r1, r1, #1 << 5
- bcs1b@ segments 7 to 0
- teqr2, #0
- mcrnep15, 0, ip, c7, c5, 0@ invalidate I cache
- mcrp15, 0, ip, c7, c10, 4@ drain WB
- movpc, lr
- __fa526_cache_flush:
- movr1, #0
- mcrp15, 0, r1, c7, c14, 0@ clean and invalidate D cache
- mcrp15, 0, r1, c7, c5, 0@ flush I cache
- mcrp15, 0, r1, c7, c10, 4@ drain WB
- movpc, lr
- __armv6_mmu_cache_flush:
- movr1, #0
- mcrp15, 0, r1, c7, c14, 0@ clean+invalidate D
- mcrp15, 0, r1, c7, c5, 0@ invalidate I+BTB
- mcrp15, 0, r1, c7, c15, 0@ clean+invalidate unified
- mcrp15, 0, r1, c7, c10, 4@ drain WB
- movpc, lr
- __armv7_mmu_cache_flush:
- mrcp15, 0, r10, c0, c1, 5@ read ID_MMFR1
- tstr10, #0xf << 16@ hierarchical cache (ARMv7)
- movr10, #0
- beqhierarchical
- mcrp15, 0, r10, c7, c14, 0@ clean+invalidate D
- biflush
- hierarchical:
- mcrp15, 0, r10, c7, c10, 5@ DMB
- stmfdsp!, {r0-r7, r9-r11}
- mrcp15, 1, r0, c0, c0, 1@ read clidr
- andsr3, r0, #0x7000000@ extract loc from clidr
- movr3, r3, lsr #23@ left align loc bit field
- beqfinished@ if loc is 0, then no need to clean
- movr10, #0@ start clean at cache level 0
- loop1:
- addr2, r10, r10, lsr #1@ work out 3x current cache level
- movr1, r0, lsr r2@ extract cache type bits from clidr
- andr1, r1, #7@ mask of the bits for current cache only
- cmpr1, #2@ see what cache we have at this level
- bltskip@ skip if no cache, or just i-cache
- mcrp15, 2, r10, c0, c0, 0@ select current cache level in cssr
- mcrp15, 0, r10, c7, c5, 4@ isb to sych the new cssr&csidr
- mrcp15, 1, r1, c0, c0, 0@ read the new csidr
- andr2, r1, #7@ extract the length of the cache lines
- addr2, r2, #4@ add 4 (line length offset)
- ldrr4, =0x3ff
- andsr4, r4, r1, lsr #3@ find maximum number on the way size
- clzr5, r4@ find bit position of way size increment
- ldrr7, =0x7fff
- andsr7, r7, r1, lsr #13@ extract max number of the index size
- loop2:
- movr9, r4@ create working copy of max way size
- loop3:
- ARM(orrr11, r10, r9, lsl r5) @ factor way and cache number into r11
- ARM(orrr11, r11, r7, lsl r2) @ factor index number into r11
- THUMB(lslr6, r9, r5)
- THUMB(orrr11, r10, r6) @ factor way and cache number into r11
- THUMB(lslr6, r7, r2)
- THUMB(orrr11, r11, r6) @ factor index number into r11
- mcrp15, 0, r11, c7, c14, 2@ clean & invalidate by set/way
- subsr9, r9, #1@ decrement the way
- bgeloop3
- subsr7, r7, #1@ decrement the index
- bgeloop2
- skip:
- addr10, r10, #2@ increment cache number
- cmpr3, r10
- bgtloop1
- finished:
- ldmfdsp!, {r0-r7, r9-r11}
- movr10, #0@ swith back to cache level 0
- mcrp15, 2, r10, c0, c0, 0@ select current cache level in cssr
- iflush:
- mcrp15, 0, r10, c7, c10, 4@ DSB
- mcrp15, 0, r10, c7, c5, 0@ invalidate I+BTB
- mcrp15, 0, r10, c7, c10, 4@ DSB
- mcrp15, 0, r10, c7, c5, 4@ ISB
- movpc, lr
- __armv5tej_mmu_cache_flush:
- 1:mrcp15, 0, r15, c7, c14, 3@ test,clean,invalidate D cache
- bne1b
- mcrp15, 0, r0, c7, c5, 0@ flush I cache
- mcrp15, 0, r0, c7, c10, 4@ drain WB
- movpc, lr
- __armv4_mmu_cache_flush:
- movr2, #64*1024@ default: 32K dcache size (*2)
- movr11, #32@ default: 32 byte line size
- mrcp15, 0, r3, c0, c0, 1@ read cache type
- teqr3, r9@ cache ID register present?
- beqno_cache_id
- movr1, r3, lsr #18
- andr1, r1, #7
- movr2, #1024
- movr2, r2, lsl r1@ base dcache size *2
- tstr3, #1 << 14@ test M bit
- addner2, r2, r2, lsr #1@ +1/2 size if M == 1
- movr3, r3, lsr #12
- andr3, r3, #3
- movr11, #8
- movr11, r11, lsl r3@ cache line size in bytes
- no_cache_id:
- movr1, pc
- bicr1, r1, #63@ align to longest cache line
- addr2, r1, r2
- 1:
- ARM(ldrr3, [r1], r11) @ s/w flush D cache
- THUMB(ldr r3, [r1]) @ s/w flush D cache
- THUMB(add r1, r1, r11)
- teqr1, r2
- bne1b
- mcrp15, 0, r1, c7, c5, 0@ flush I cache
- mcrp15, 0, r1, c7, c6, 0@ flush D cache
- mcrp15, 0, r1, c7, c10, 4@ drain WB
- movpc, lr
- __armv3_mmu_cache_flush:
- __armv3_mpu_cache_flush:
- movr1, #0
- mcrp15, 0, r1, c7, c0, 0@ invalidate whole cache v3
- movpc, lr
- /*
- * Various debugging routines for printing hex characters and
- * memory, which again must be relocatable.
- */
- #ifdef DEBUG
- .align2
- .typephexbuf,#object
- phexbuf:.space12
- .sizephexbuf, . - phexbuf
- @ phex corrupts {r0, r1, r2, r3}
- phex:adrr3, phexbuf
- movr2, #0
- strbr2, [r3, r1]
- 1:subsr1, r1, #1
- movmir0, r3
- bmiputs
- andr2, r0, #15
- movr0, r0, lsr #4
- cmpr2, #10
- addger2, r2, #7
- addr2, r2, #'0'
- strbr2, [r3, r1]
- b1b
- @ puts corrupts {r0, r1, r2, r3}
- puts:loadspr3, r1
- 1:ldrbr2, [r0], #1
- teqr2, #0
- moveqpc, lr
- 2:writebr2, r3
- movr1, #0x00020000
- 3:subsr1, r1, #1
- bne3b
- teqr2, #'\n'
- moveqr2, #'\r'
- beq2b
- teqr0, #0
- bne1b
- movpc, lr
- @ putc corrupts {r0, r1, r2, r3}
- putc:
- movr2, r0
- movr0, #0
- loadspr3, r1
- b2b
- @ memdump corrupts {r0, r1, r2, r3, r10, r11, r12, lr}
- memdump:movr12, r0
- movr10, lr
- movr11, #0
- 2:movr0, r11, lsl #2
- addr0, r0, r12
- movr1, #8
- blphex
- movr0, #':'
- blputc
- 1:movr0, #' '
- blputc
- ldrr0, [r12, r11, lsl #2]
- movr1, #8
- blphex
- andr0, r11, #7
- teqr0, #3
- moveqr0, #' '
- bleqputc
- andr0, r11, #7
- addr11, r11, #1
- teqr0, #7
- bne1b
- movr0, #'\n'
- blputc
- cmpr11, #64
- blt2b
- movpc, r10
- #endif
- .ltorg
- reloc_code_end:
- .align
- .section ".stack", "aw", %nobits
- .L_user_stack:.space4096
- .L_user_stack_end:
看了上面的源码,可能就算是分析过了也是比较模糊的,通过下面的一个代码流程图,大家就可以清楚的了解内核自解压的全过程了: