题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=4318
题解:
期望dp
如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就好解决了。
定义g[i]表示以1位置结尾的连续1的长度的期望。
转移显然:g[i]=p[i]*(g[i]+1)
然后定义h[i]表示以1位置结尾的连续1的长度的平方的期望
由于(x+1)^2=x^2+2x+1,
所以h[i]=p[i]*(h[i-1]+2*g[i-1]+1)
最后定义f[i]表示1~i这个区间期望能得到的分数,
分为此时i位置得到1和得到0两种情况:
得到1,由于(x+1)^3=x^3+3*x^2+3x+1 那么贡献为:p[i]*(f[i-1]+3*h[i-1]+3*g[i-1]+1)
得到0,那么直接为前面的期望得分,贡献为(1-p[i])*f[i-1]
所以f[i]的转移为:f[i]=(得到1)p[i]*(f[i-1]+3*h[i-1]+3*g[i-1]+1)+(得到0)(1-p)*f[i-1];
.....................................................................
==,难道没有感觉这个f[i]的转移有一丝丝诡异么?
先看看这个错的做法,
多了一个d[i],表示以i结尾形成的连续1的长度的3次方的期望。
那么其转移类似g和h的转移:
d[i]=p[i]*(d[i-1]+3*h[i-1]+3*g[i-1]+1)
然后再去求得f[i],同样地分为当前第i位得到1和得到0两种情况:
f[i]=(得到1)d[i]+(得到0)(1-p[i])*f[i-1]
乍一看似乎没问题,但是在(得到1)那里却出了问题:
f[i]表示的是1~i这个区间期望能够得到的分数,
但是在(得到1)这个转移这里,我们却只考虑了以i结尾的期望的那段1的贡献,然而其它部分的贡献就没有转移过来。
这也就是这个做法得到的答案比正确答案小的原因。
(可以强行把之前的贡献再加进来么?233,我反正加不来。。。)
.......................................................................
现在再反过来看看之前正确的f[i]的求法(没有d[i]数组的那个做法)
f[i]=(得到1)p[i]*(f[i-1]+3*h[i-1]+3*g[i-1]+1)+(得到0)(1-p)*f[i-1];
显然(得到0)的那个转移没有问题。
那么我们来想想(得到1)的那么那个转移是如何解决掉那个错误做法出现的问题的。
由于f[i-1]表示的是区间1~i-1的期望得分,
那么我们就可以把f[i-1]看成是由两个部分组成的:
一个部分是以i-1结尾的期望的那段连续的1造成的贡献A(一个长度的3次方的期望),另一部分则是其它部分的贡献B:
所以(得到1)这个转移可以看成是:p[i]*(B+A+3*h[i-1]+3*g[i-1]+1),
显然,后面的A+3*h[i-1]+3*g[i-1]+1计算的就是以i结尾形成的连续1的长度的3次方的期望,
而B则是其它部分的贡献。
所以就是这样巧妙地把新的贡献和其它部分的贡献都统计进了f[i]里面。
以上就是个人的见解。
代码:
#include<bits/stdc++.h>
#define MAXN 100005
using namespace std;
double g[MAXN],h[MAXN],f[MAXN],p;
int N;
int main(){
ios::sync_with_stdio(0);
cin>>N;
for(int i=1;i<=N;i++){
cin>>p;
g[i]=p*(g[i-1]+1);
h[i]=p*(h[i-1]+2*g[i-1]+1);
f[i]=p*(f[i-1]+3*h[i-1]+3*g[i-1]+1)+(1-p)*f[i-1];
}
cout<<fixed<<setprecision(1)<<f[N]<<endl;
return 0;
}