题目描述

Linux用户和OSX用户一定对软件包管理器不会陌生。通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其它软件包),完成所有的配置。ebian/Ubuntu使用的apt-get,Fedora/CentOS使用的yum,以及OSX下可用的homebrew都是优秀的软件包管理器。

你决定设计你自己的软件包管理器。不可避免地,你要解决软件包之间的依赖问题。如果软件包A依赖软件包B,那么安装软件包A以前,必须先安装软件包B。同时,如果想要卸载软件包B,则必须卸载软件包A。现在你已经获得了所有的软件包之间的依赖关系。而且,由于你之前的工作,除0号软件包以外,在你的管理器当中的软件包都会依赖一个且仅一个软件包,而0号软件包不依赖任何一个软件包。依赖关系不存在环(若有m(m≥2)个软件包A1,A2,A3,⋯,Am,其中A1依赖A2,A2依赖A3,A3依赖A4,……,A[m-1]依赖Am,而Am依赖A1,则称这m个软件包的依赖关系构成环),当然也不会有一个软件包依赖自己。

现在你要为你的软件包管理器写一个依赖解决程序。根据反馈,用户希望在安装和卸载某个软件包时,快速地知道这个操作实际上会改变多少个软件包的安装状态(即安装操作会安装多少个未安装的软件包,或卸载操作会卸载多少个已安装的软件包),你的任务就是实现这个部分。注意,安装一个已安装的软件包,或卸载一个未安装的软件包,都不会改变任何软件包的安装状态,即在此情况下,改变安装状态的软件包数为0。

输入输出格式

输入格式:

从文件manager.in中读入数据。

输入文件的第1行包含1个整数n,表示软件包的总数。软件包从0开始编号。

随后一行包含n−1个整数,相邻整数之间用单个空格隔开,分别表示1,2,3,⋯,n−2,n−1号软件包依赖的软件包的编号。

接下来一行包含1个整数q,表示询问的总数。之后q行,每行1个询问。询问分为两种:

install x:表示安装软件包x

uninstall x:表示卸载软件包x

你需要维护每个软件包的安装状态,一开始所有的软件包都处于未安装状态。

对于每个操作,你需要输出这步操作会改变多少个软件包的安装状态,随后应用这个操作(即改变你维护的安装状态)。

输出格式:

输出到文件manager.out中。

输出文件包括q行。

输出文件的第i行输出1个整数,为第i步操作中改变安装状态的软件包数。

输入输出样例

输入样例#1:

7
0 0 0 1 1 5
5
install 5
install 6
uninstall 1
install 4
uninstall 0
输出样例#1:

3
1
3
2
3
输入样例#2:

10
0 1 2 1 3 0 0 3 2
10
install 0
install 3
uninstall 2
install 7
install 5
install 9
uninstall 9
install 4
install 1
install 9
输出样例#2:

1
3
2
1
3
1
1
1
0
1

说明

【样例说明 1】

AC日记——软件包管理器 洛谷 P2416-LMLPHP

一开始所有的软件包都处于未安装状态。

安装5号软件包,需要安装0,1,5三个软件包。

之后安装6号软件包,只需要安装6号软件包。此时安装了0,1,5,6四个软件包。

卸载1号软件包需要卸载1,5,6三个软件包。此时只有0号软件包还处于安装状态。

之后安装4号软件包,需要安装1,4两个软件包。此时0,1,4处在安装状态。最后,卸载0号软件包会卸载所有的软件包。`

【数据范围】

AC日记——软件包管理器 洛谷 P2416-LMLPHP

【时限1s,内存512M】

思路:

  树剖。

来,上代码:

#include <cstdio>
#include <iostream>
#include <algorithm> #define maxn 100001 using namespace std; struct TreeNodeType {
int l,r,dis,lit,mid,flag;
};
struct TreeNodeType tree[maxn<<]; struct EdgeType {
int to,next;
};
struct EdgeType edge[maxn<<]; int if_z,n,size[maxn],deep[maxn],belong[maxn];
int flag[maxn],end[maxn],cnt,f[maxn],head[maxn];
int Enum,m; char Cget; inline void read_int(int &now)
{
now=,if_z=,Cget=getchar();
while(Cget>''||Cget<'')
{
if(Cget=='-') if_z=-;
Cget=getchar();
}
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
now*=if_z;
} inline void edge_add(int from,int to)
{
edge[++Enum].to=from,edge[Enum].next=head[to],head[to]=Enum;
edge[++Enum].to=to,edge[Enum].next=head[from],head[from]=Enum;
} void search(int now,int fa)
{
int pos=cnt++;
deep[now]=deep[fa]+,f[now]=fa;
for(int i=head[now];i;i=edge[i].next)
{
if(edge[i].to==fa) continue;
search(edge[i].to,now);
}
size[now]=cnt-pos;
} void search_(int now,int chain)
{
flag[now]=++cnt;
belong[now]=chain;
int pos=-;
for(int i=head[now];i;i=edge[i].next)
{
if(edge[i].to==f[now]) continue;
if(size[edge[i].to]>size[pos]) pos=edge[i].to;
}
if(pos!=-) search_(pos,chain);
for(int i=head[now];i;i=edge[i].next)
{
if(edge[i].to==f[now]||edge[i].to==pos) continue;
search_(edge[i].to,edge[i].to);
}
end[now]=cnt;
} void tree_build(int now,int l,int r)
{
tree[now].l=l,tree[now].r=r;
tree[now].lit=r-l+;
if(l==r) return ;
tree[now].mid=(l+r)>>;
tree_build(now<<,l,tree[now].mid);
tree_build(now<<|,tree[now].mid+,r);
} inline void tree_up(int now)
{
tree[now].dis=tree[now<<].dis+tree[now<<|].dis;
} inline void tree_down(int now)
{
if(tree[now].lit==) return ;
if(tree[now].flag==)
{
tree[now<<].dis=,tree[now<<|].dis=;
tree[now<<].flag=tree[now<<|].flag=tree[now].flag;
}
if(tree[now].flag==)
{
tree[now<<].dis=tree[now<<].lit;
tree[now<<|].dis=tree[now<<|].lit;
tree[now<<].flag=tree[now<<|].flag=tree[now].flag;
}
tree[now].flag=;
} void tree_change(int now,int l,int r,int type)
{
if(tree[now].l==l&&tree[now].r==r)
{
tree[now].flag=type;
if(type==) tree[now].dis=;
else tree[now].dis=tree[now].lit;
return ;
}
if(tree[now].flag) tree_down(now);
if(l>tree[now].mid) tree_change(now<<|,l,r,type);
else if(r<=tree[now].mid) tree_change(now<<,l,r,type);
else
{
tree_change(now<<,l,tree[now].mid,type);
tree_change(now<<|,tree[now].mid+,r,type);
}
tree_up(now);
} int tree_query(int now,int l,int r)
{
if(tree[now].l==l&&tree[now].r==r)
{
return tree[now].dis;
}
if(tree[now].flag) tree_down(now);
tree_up(now);
if(l>tree[now].mid) return tree_query(now<<|,l,r);
else if(r<=tree[now].mid) return tree_query(now<<,l,r);
else return tree_query(now<<,l,tree[now].mid)+tree_query(now<<|,tree[now].mid+,r);
} inline int solve(int x)
{
int ans=;
while(belong[x]!=)
{
ans+=(flag[x]-flag[belong[x]]+)-tree_query(,flag[belong[x]],flag[x]);
tree_change(,flag[belong[x]],flag[x],);
x=f[belong[x]];
}
ans+=(flag[x]-flag[belong[x]]+)-tree_query(,flag[belong[x]],flag[x]);
tree_change(,flag[belong[x]],flag[x],);
return ans;
} int main()
{
read_int(n);
int to;
for(int i=;i<n;i++)
{
read_int(to);
edge_add(i,to);
}
search(,),cnt=,search_(,);
tree_build(,,n);
read_int(m);
char ch[];
for(int i=;i<=m;i++)
{
cin>>ch;read_int(to);
if(ch[]=='i')
{
printf("%d\n",solve(to));
}
else
{
printf("%d\n",tree_query(,flag[to],end[to]));
tree_change(,flag[to],end[to],);
}
}
return ;
}
05-28 18:37