Description
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转
停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种
因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是
修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本
尽可能地小。
Input
第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示
每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编
号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码
头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一
条从码头A到码头B的运输路线。
Output
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。
Sample Input
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
Sample Output
32
前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
这个题的IDEA……也炒鸡妙啊……
(可能是我太SB了……没看数据就以为是什么SPFA的新操作……)
结果看了范围(题解)才意识到smg啊……这范围一看都不是单纯的最短路好吧……
其实这个题是由DP和SPFA两部分构成的……然而其实这两部分都特别简单……
用Len[i][j]表示i到j天都用一条路的最短路,这个可以用多次SPFA求
然后DP求解,方程就很好想了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<queue>
#define INF (1061109567)
using namespace std; int head[],num_edge;
int Day[][],f[],Len[][];
int num[],dis[];
int n,m,k,e;
bool used[];
queue <int> q; struct node
{
int to;
int next;
int len;
}edge[]; void add(int u,int v,int l)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
edge[num_edge].len=l;
head[u]=num_edge;
} int SPFA(int x,int y)
{
memset(used,false,sizeof(used));
memset(dis,0x3f,sizeof(dis));
for (int i=x;i<=y;++i)
for (int j=;j<=num[i];++j)
used[Day[i][j]]=true;
dis[]=;
used[]=true;
q.push();
while (!q.empty())
{
int x=q.front();
q.pop();
for (int i=head[x];i!=;i=edge[i].next)
{
if (dis[edge[i].to]>dis[x]+edge[i].len)
{
dis[edge[i].to]=dis[x]+edge[i].len;
if (!used[edge[i].to])
{
used[edge[i].to]=true;
q.push(edge[i].to);
}
}
}
used[x]=false;
}
return dis[m];
} int main()
{
int u,v,l,d,p,a,b;
scanf("%d%d%d%d",&n,&m,&k,&e);
for (int i=;i<=e;++i)
{
scanf("%d%d%d",&u,&v,&l);
add(u,v,l);
add(v,u,l);
}
scanf("%d",&d);
for (int i=;i<=d;++i)
{
scanf("%d%d%d",&p,&a,&b);
for (int j=a;j<=b;++j)
Day[j][++num[j]]=p;
}
for (int i=;i<=n;++i)
for (int j=i;j<=n;++j)
Len[i][j]=SPFA(i,j);
memset(f,0x3f,sizeof(f));
for (int i=;i<=n;++i)
{
if (Len[][i]!=INF)
f[i]=Len[][i]*i;
for (int j=;j<=i;++j)
if (Len[j][i]!=INF)
f[i]=min(f[i],f[j-]+Len[j][i]*(i-j+)+k);
}
printf("%d",f[n]);
}