本文介绍了Fortran - Cython工作流程的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

限时删除!!

我想建立一个工作流程,在Windows机器上使用Cython从Python到达Fortran例程



经过一番搜索后,我发现:



以前还有两个我放在一起的地方:,
我当然不是这方面的专家,但这些例子可能是一个很好的开始。


I would like to set up a workflow to reach fortran routines from Python using Cython on a Windows Machine

after some searching I found :http://www.fortran90.org/src/best-practices.html#interfacing-with-c and https://stackoverflow.com/tags/fortran-iso-c-binding/info

and some code pices:

Fortran side:

pygfunc.h:

void c_gfunc(double x, int n, int m, double *a, double *b, double *c);

pygfunc.f90

module gfunc1_interface
    use iso_c_binding
    use gfunc_module

    implicit none

contains
    subroutine c_gfunc(x, n, m, a, b, c) bind(c)
        real(C_FLOAT), intent(in), value :: x
        integer(C_INT), intent(in), value ::  n, m
        type(C_PTR),    intent(in), value :: a, b
        type(C_PTR),                value :: c

        real(C_FLOAT), dimension(:), pointer :: fa, fb
        real(C_FLOAT), dimension(:,:), pointer :: fc

        call c_f_pointer(a, fa, (/ n /))
        call c_f_pointer(b, fb, (/ m /))
        call c_f_pointer(c, fc, (/ n, m /))
        call gfunc(x, fa, fb, fc)
     end subroutine

end module

gfunc.f90

module gfunc_module

use iso_c_binding

    implicit none
    contains
        subroutine gfunc(x, a, b, c)
            real,                 intent(in) :: x
            real, dimension(:),   intent(in) :: a, b
            real, dimension(:,:), intent(out) :: c

            integer :: i, j, n, m
            n = size(a)
            m = size(b)
            do j=1,m
                do i=1,n
                     c(i,j) = exp(-x * (a(i)**2 + b(j)**2))
                end do
            end do
        end subroutine
end module

Cython side:

pygfunc.pyx

cimport numpy as cnp
import numpy as np

cdef extern from "./pygfunc.h":
    void c_gfunc(double, int, int, double *, double *, double *)

cdef extern from "./pygfunc.h":
    pass

def f(float x, a=-10.0, b=10.0, n=100):
    cdef cnp.ndarray ax, c
    ax = np.arange(a, b, (b-a)/float(n))
    n = ax.shape[0]
    c = np.ndarray((n,n), dtype=np.float64, order='F')
    c_gfunc(x, n, n, <double *> ax.data, <double *> ax.data, <double *> c.data)
    return c

and the setup file:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy as np

ext_modules = [Extension('pygfunc', ['pygfunc.pyx'])]

setup(
    name = 'pygfunc',
    include_dirs = [np.get_include()],
    cmdclass = {'build_ext': build_ext},
    ext_modules = ext_modules )

all the files ar in one directory

the fortran files compile ( using NAG Fortran Builder ) pygfunc compiles

but linking them throws a:

error LNK2019: unresolved external symbol _c_gfunc referenced in function ___pyx_pf_7pygfunc_f

and of course:

fatal error LNK1120: 1 unresolved externals

What am I missing ? or is this way to set up a workflow between Python and Fortran damned from the beginning ?

THXMartin

解决方案

Here's a minimum working example.I used gfortran and wrote the compile commands directly into the setup file.

gfunc.f90

module gfunc_module
implicit none
contains
subroutine gfunc(x, n, m, a, b, c)
    double precision, intent(in) :: x
    integer, intent(in) :: n, m
    double precision, dimension(n), intent(in) :: a
    double precision, dimension(m), intent(in) :: b
    double precision, dimension(n, m), intent(out) :: c
    integer :: i, j
    do j=1,m
        do i=1,n
             c(i,j) = exp(-x * (a(i)**2 + b(j)**2))
        end do
    end do
end subroutine
end module

pygfunc.f90

module gfunc1_interface
use iso_c_binding, only: c_double, c_int
use gfunc_module, only: gfunc
implicit none
contains
subroutine c_gfunc(x, n, m, a, b, c) bind(c)
    real(c_double), intent(in) :: x
    integer(c_int), intent(in) ::  n, m
    real(c_double), dimension(n), intent(in) :: a
    real(c_double), dimension(m), intent(in) :: b
    real(c_double), dimension(n, m), intent(out) :: c
    call gfunc(x, n, m, a, b, c)
end subroutine
end module

pygfunc.h

extern void c_gfunc(double* x, int* n, int* m, double* a, double* b, double* c);

pygfunc.pyx

from numpy import linspace, empty
from numpy cimport ndarray as ar

cdef extern from "pygfunc.h":
    void c_gfunc(double* a, int* n, int* m, double* a, double* b, double* c)

def f(double x, double a=-10.0, double b=10.0, int n=100):
    cdef:
        ar[double] ax = linspace(a, b, n)
        ar[double,ndim=2] c = empty((n, n), order='F')
    c_gfunc(&x, &n, &n, <double*> ax.data, <double*> ax.data, <double*> c.data)
    return c

setup.py

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
# This line only needed if building with NumPy in Cython file.
from numpy import get_include
from os import system

# compile the fortran modules without linking
fortran_mod_comp = 'gfortran gfunc.f90 -c -o gfunc.o -O3 -fPIC'
print fortran_mod_comp
system(fortran_mod_comp)
shared_obj_comp = 'gfortran pygfunc.f90 -c -o pygfunc.o -O3 -fPIC'
print shared_obj_comp
system(shared_obj_comp)

ext_modules = [Extension(# module name:
                         'pygfunc',
                         # source file:
                         ['pygfunc.pyx'],
                         # other compile args for gcc
                         extra_compile_args=['-fPIC', '-O3'],
                         # other files to link to
                         extra_link_args=['gfunc.o', 'pygfunc.o'])]

setup(name = 'pygfunc',
      cmdclass = {'build_ext': build_ext},
      # Needed if building with NumPy.
      # This includes the NumPy headers when compiling.
      include_dirs = [get_include()],
      ext_modules = ext_modules)

test.py

# A script to verify correctness
from pygfunc import f
print f(1., a=-1., b=1., n=4)

import numpy as np
a = np.linspace(-1, 1, 4)**2
A, B = np.meshgrid(a, a, copy=False)
print np.exp(-(A + B))

Most of the changes I made aren't terribly fundamental. Here are the important ones.

  • You were mixing double precision and single precision floating point numbers. Don't do that. Use real (Fortran), float (Cython), and float32 (NumPy) together and use double precision (Fortran), double (Cyton), and float64 (NumPy) together. Try not to mix them unintentionally. I assumed you wanted doubles in my example.

  • You should pass all variables to Fortran as pointers. It does not match the C calling convention in that regard. The iso_c_binding module in Fortran only matches the C naming convention. Pass arrays as pointers with their size as a separate value. There may be other ways of doing this, but I don't know any.

I also added some stuff in the setup file to show where you can add some of the more useful extra arguments when building.

To compile, run python setup.py build_ext --inplace. To verify that it works, run the test script.

Here is the example shown on fortran90.org: mesh_exp

Here are two more that I put together some time ago: ftridiag, fssorI'm certainly not an expert at this, but these examples may be a good place to start.

这篇关于Fortran - Cython工作流程的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

1403页,肝出来的..

09-06 10:28