今天在看MLlib的源码时,看到Vector的声明是sealed trait
,很好奇这个sealed
有什么作用,与是搜到了这个文章:
http://www.cnblogs.com/rollenholt/p/4192758.html
试验了下,这个sealed就是保证你在match的时候需要把所有可能出现的情况都写出来。如果漏掉一个,就会报编译出错:
比如下面的代码,声明了两个trait,其中Test2是sealed声明:
sealed trait Test2{}
trait Test1{}
case class A1 extends Test1{}
case class B1 extends Test1{}
case class C1 extends Test1{}
case class A2 extends Test2{}
case class B2 extends Test2{}
case class C2 extends Test2{}
然后做个测试:
object TraitTest {
def main(args: Array[String]) {
val x:Test1 = new B1()
x match {
case x @ A1() => println("A1")
case x @ B1() => println("B1")
}
}
}
这样是没什么问题的。
object TraitTest1 {
def main(args: Array[String]) {
val x:Test2 = new B2()
x match {
case x @ A2() => println("A2")
case x @ B2() => println("B2")
// case x @ C2() => println("C2")
}
}
}
如果注释没有打开,就会报下面的错误:
Warning:(30, 5) match may not be exhaustive.
It would fail on the following input: C2()
x match {
^
在Spark MLlib中,它是这样用的:
sealed trait Vector extends Serializable {
...
override def equals(other: Any): Boolean = {
other match {
case v2: Vector =>
if (this.size != v2.size) return false
(this, v2) match {
case (s1: SparseVector, s2: SparseVector) =>
Vectors.equals(s1.indices, s1.values, s2.indices, s2.values)
case (s1: SparseVector, d1: DenseVector) =>
Vectors.equals(s1.indices, s1.values, 0 until d1.size, d1.values)
case (d1: DenseVector, s1: SparseVector) =>
Vectors.equals(0 until d1.size, d1.values, s1.indices, s1.values)
case (_, _) => util.Arrays.equals(this.toArray, v2.toArray)
}
case _ => false
}
}
}
这样能有效的避免遗漏可能出现的情况!