本文介绍了防止 pandas 自动推断read_csv中的类型的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

限时删除!!

我有一个用#分隔的文件,其中包含三列:第一列是整数,第二列看起来像是浮点数,但不是,第三列是字符串.我尝试使用pandas.read_csv

I have a #-separated file with three columns: the first is integer, the second looks like a float, but isn't, and the third is a string. I attempt to load this directly into python with pandas.read_csv

In [149]: d = pandas.read_csv('resources/names/fos_names.csv',  sep='#', header=None, names=['int_field', 'floatlike_field', 'str_field'])

In [150]: d
Out[150]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1673 entries, 0 to 1672
Data columns:
int_field          1673  non-null values
floatlike_field    1673  non-null values
str_field          1673  non-null values
dtypes: float64(1), int64(1), object(1)

pandas尝试变得聪明,并自动将字段转换为有用的类型.问题是我实际上不希望这样做(如果这样做的话,我会使用converters参数).如何防止pandas自动转换类型?

pandas tries to be smart and automatically convert fields to a useful type. The issue is that I don't actually want it to do so (if I did, I'd used the converters argument). How can I prevent pandas from converting types automatically?

推荐答案

我认为最好的选择是首先使用numpy将数据作为记录数组读取.

I think your best bet is to read the data in as a record array first using numpy.

# what you described:
In [15]: import numpy as np
In [16]: import pandas
In [17]: x = pandas.read_csv('weird.csv')

In [19]: x.dtypes
Out[19]:
int_field            int64
floatlike_field    float64  # what you don't want?
str_field           object

In [20]: datatypes = [('int_field','i4'),('floatlike','S10'),('strfield','S10')]

In [21]: y_np = np.loadtxt('weird.csv', dtype=datatypes, delimiter=',', skiprows=1)

In [22]: y_np
Out[22]:
array([(1, '2.31', 'one'), (2, '3.12', 'two'), (3, '1.32', 'three ')],
      dtype=[('int_field', '<i4'), ('floatlike', '|S10'), ('strfield', '|S10')])

In [23]: y_pandas = pandas.DataFrame.from_records(y_np)

In [25]: y_pandas.dtypes
Out[25]:
int_field     int64
floatlike    object  # better?
strfield     object

这篇关于防止 pandas 自动推断read_csv中的类型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

1403页,肝出来的..

09-06 09:13