在图像处理时,我们接触到的彩色以RGB居多,为了分析图像在某一通道上的特性,需要将图像的颜色通道进行分离,或者是在对某一颜色通道处理后重新进行融合。opencv提供了split()函数来进行颜色通道的分离,提供了merge()函数来进行颜色通道的融合。
1.split()函数
此函数的作用是将一个图像通道进行分离。
split()函数定义:
void split(const Mat& m, vector<mat>& mv );</mat>
参数说明:
- const Mat&类型的src,填我们需要进行分离的图像;
- vector<mat style="margin-top: 0px;">类型的mv,填函数的输出数组或者输出的vector容器,即分离后的图像;</mat>
2.merge()函数
merge()函数的功能是split()函数的逆向操作,将多个数组合并成一个多通道的数组。
merge()函数定义:
void merge(const vector<mat>& mv, OutputArray dst );</mat>
- const <mat style="margin-top: 0px;">类型的mv,填需要被合并的vector容器的阵列,这个mv参数中所有的矩阵必须有着一样的尺寸和深度;</mat>
- 保存为合并后的图像;
3.利用split()函数和阈值化去除票据上的印章,merge()函数合并图像
票据上往往会有一些红色印章把一些重要信息区域给覆盖了,比如一些开发票人员盖印章时比较随意,容易吧一些关键区域给遮蔽了,这让接下来的票据识别很困难,因此,我们必须先对票据图像进行一定的预处理来移除印章干扰,再进行字符识别,这样子识别准确率才有保证。
- 任务:我们需要识别发票的字体(红色盖章影响都我们的识别工作)
代码如下:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace cv;
using namespace std; int main() {
//【1】定义相关变量
Mat srcImage, newImage;
Mat srcImage_B, srcImage_G, srcImage_R;
//【2】存放Mat的数组vector
vector<Mat> channels_BGR;
//【3】读取原始图像并检查图像是否读取成功
srcImage = imread("E:\\VS2015Opencv\\vs2015\\project\\picture\\02.jpg");
if (srcImage.empty())
{
cout << "读取图像有误,请重新输入正确路径!\n";
getchar();
return -1;
}
imshow("src原图像", srcImage); //在窗口显示原图像
//【4】对加载的原图像进行通道分离,即把一个3通道图像转换成为3个单通道图像
split(srcImage, channels_BGR);
//从数组中取出3种颜色,0通道为B分量,1通道为G分量,2通道为R分量。因为:RGB色彩空间在opencv中默认通道顺序为BGR!!!
srcImage_B = channels_BGR.at(0);
srcImage_G = channels_BGR.at(1);
srcImage_R = channels_BGR.at(2);
imshow("srcImage_B通道", srcImage_B); //分别显示R,G,B各个通道图像
imshow("srcImage_G通道", srcImage_G);
imshow("srcImage_R通道", srcImage_R); //【5】 全局二值化
Mat gray;
cvtColor(srcImage, gray, CV_RGB2GRAY);
int th = 170; //阈值要根据实际情况调整
Mat binary;
//CV_THRESH_BINARY代表阈值其中一种模式,
threshold(gray, binary, th, 255, CV_THRESH_BINARY);
Mat red_binary;
threshold(srcImage_R, red_binary, th, 255, CV_THRESH_BINARY);
imshow("灰色图 + 阈值处理 ", binary);
imshow("R通道+阈值处理", red_binary);
//【6】将3个单通道重新合并成一个三通道图像
merge(channels_BGR, newImage);
imshow("将R,G,B通道合并后的图像", newImage);
waitKey(0);
return 0; }
上述博文参考:https://www.jianshu.com/p/dcc9c29f10b4