无重复元素的LCS问题
n 做法不说了。
nlogn 做法 ——
因为LCS问题求的是公共子序列,顺序不影响答案,影响答案的只是两个串的元素是否相同,所以可以交换元素位置。
首先简化一下问题,假设P1恰好为单调递增的1,2,3,...n,那么很显然答案就是P2的最长上升子序列的长度
问题是P1并非单调递增的,但我们可以假定它就是1,2,3,...,n。
也就是重新定义一下第一个串中 所有数 的顺序,定义a[x] = i,也就是 数x 是第 i 个,然后再重新弄一下第二串的顺序,最后求一遍lis。
——代码
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std; const int MAXN = ;
int n, ans;
int a[MAXN], b[MAXN], c[MAXN]; inline int query(int x)
{
int ans = ;
for(; x; x -= x & -x) ans = max(ans, c[x]);
return ans;
} inline void update(int x, int d)
{
for(; x <= n; x += x & -x) c[x] = max(c[x], d);
} int main()
{
int i, j, x, y;
scanf("%d", &n);
for (i = ; i <= n; i++) scanf("%d", &x), a[x] = i;
for (i = ; i <= n; i++) scanf("%d", &x), b[i] = a[x];
for(i = ; i <= n; i++)
{
y = query(b[i] - ) + ;
update(b[i], y);
ans = max(ans, y);
}
printf("%d", ans);
return ;
}
还有另一种思路。也是 nlogn,而且比较好理解。(说实话,我真不理解上面的映射是怎么弄的)
原本 n做法是设 f[i][j] 表示 第一串的前 i 个数 和 第二串的前 j 个数 的最优答案(i 和 j 都不必须选),然后一阵乱搞。
nlogn——
可以改变状态的定义,f[i][j] 表示 第一串的前 i 个数 和 第二串的前 j 个数 的最有答案(i 不必须选,j 必须选)
这样 f[i][] 只能由 f[i - 1][] 转移过来,这样就变成了分层的DP,并且只转移到 f[i][k] (其中 b[k] == a[i]),也就是只影响一个答案。
所以先记录和 a[i] 相同的 b[j] 的位置,然后 f 数组可以变成一维,动态维护 f 数组即可。
f[i] = max(f[j]) + 1 ( 1 <= j < i && a[i] == b[j])
——代码
#include <cstdio>
#include <iostream> using namespace std; const int MAXN = ;
int n, ans;
int a[MAXN], b[MAXN], c[MAXN], p[MAXN], f[MAXN]; inline int query(int x)
{
int ret = ;
for(; x; x -= x & -x) ret = max(ret, c[x]);
return ret;
} inline void update(int x, int d)
{
for(; x <= n; x += x & -x) c[x] = max(c[x], d);
} int main()
{
int i;
scanf("%d", &n);
for(i = ; i <= n; i++) scanf("%d", &a[i]);
for(i = ; i <= n; i++) scanf("%d", &b[i]), p[b[i]] = i;
for(i = ; i <= n; i++)
{
f[p[a[i]]] = query(p[a[i]] - ) + ;
update(p[a[i]], f[p[a[i]]]);
ans = max(ans, f[p[a[i]]]);
}
printf("%d", ans);
return ;
}