本文介绍了可能吗?:行为t [行为t a] - >行为t [a]的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

限时删除!!

有没有一种方法可以让行为t [a] ,其中t时刻[a]的值是包含在行为t [行为ta] 在时间t? I.e,一个类型为的函数:

 行为t [行为t a]  - >行为t [a] 

如果这是不可能的,那是因为逻辑上的不可能性或限制在反应香蕉?

解决方案

该类型是平凡居住的任何应用程序:
$ b

 import Control.Applicative 
import Control.Monad
导入Data.Functor.Identity
将限定的Data.Traversable导入为T

f'::(Applicative f)=> f [f a] - > f [a]
f'= const $ pure []

这显然不是什么你打算。因此,让我们问一下:

 (Traversable t)=>行为u(t(行为u a)) - >行为u(ta)

或更普遍的适用于我们可以构建的应用程序

 (T.Traversable t)=> f(t(f a)) - > f(ta)

任何 f

  f ::(Monad m,T.Traversable t)=> m(t(m a)) - > m(t a)
f =联接。 liftM T.sequence

一个明显的问题出现了:如果应用程序有这样一个 f ,是否必须是monad?答案是。我们只需将 f 应用于 Identity traversable(一元素集合 - Traversable 实例身份)和构造加入作为

  g ::(Applicative m)=> (t.Traversable t)=> m(t(m a)) - > m(t a))
- > (m(m a) - > m a)
g f = fmap runIdentity。 F 。 fmap Identity

所以我们的函数正好适用于那些也是monad的应用程序。



结束语:您正在寻找的函数存在当且仅当 Behavior 是 Monad 。因为它不是,所以很可能没有这样的功能。 (我相信如果有办法让它成为monad,它会包含在库中)。

Is there a way to have a Behavior t [a] where the values of [a] at time t are the values contained in a Behavior t [Behavior t a] at time t? I.e, a function with the type of:

Behavior t [Behavior t a] -> Behavior t [a]

If this is not possible, is that because of a logical impossibility or a limitation in reactive-banana?

解决方案

The type is trivially inhabited for any Applicative:

{-# LANGUAGE RankNTypes #-}
import Control.Applicative
import Control.Monad
import Data.Functor.Identity
import qualified Data.Traversable as T

f' :: (Applicative f) => f [f a] -> f [a]
f' = const $ pure []

which is clearly not what you intended. So let's ask for inhabitation of

(Traversable t) => Behavior u (t (Behavior u a)) -> Behavior u (t a)

or more generally for which applicatives we can construct

(T.Traversable t) => f (t (f a)) -> f (t a)

This is inhabited for any f that is also a monad:

f :: (Monad m, T.Traversable t) => m (t (m a)) -> m (t a)
f = join . liftM T.sequence

An obvious question arises: If an applicative has such an f, does it have to be a monad? The answer is yes. We just apply f to the Identity traversable (one-element collection - the Traversable instance of Identity) and construct join as

g :: (Applicative m) => (forall t . (T.Traversable t) => m (t (m a)) -> m (t a))
                     -> (m (m a) -> m a)
g f = fmap runIdentity . f . fmap Identity

So our function is inhabited precisely for those applicatives that are also monads.

To conclude: The function you're seeking would exist if and only if Behavior were a Monad. And because it is not, most likely there is no such function. (I believe that if there were a way how to make it a monad, it'd be included in the library.)

这篇关于可能吗?:行为t [行为t a] - >行为t [a]的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

1403页,肝出来的..

09-06 08:36