http://www.lydsy.com/JudgeOnline/problem.php?id=2226
题目大意:给定一个n,求lcm(1,n)+lcm(2,n)+……+lcm(n,n)。
——————————————————————————————
如果是刚做完[SDOI2012]Longge的问题的话这道题应该能轻松一些。
显然答案可以转化为∑n*i/gcd(n,i)。
设k=gcd(n,i),则可以转化为∑n*i/k(k|n且gcd(n,i)=k),然后变成n*(∑i/k)(k|n且gcd(n,i)=k)。
又因为gcd(n/k,i/k)=1,所以对于一个k,∑i/k就是与n/k互质的数的和。
而对于一个数n,求与n互质的数的和=n*phi(n)/2。
于是这题我们就做完了。
PS:秉承着万恶的SPOJ题的尿性,这题有点卡常数。
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
ll phi[N],su[N];
bool he[N];
void Euler(int n){
int tot=;
phi[]=;
for(int i=;i<=n;i++){
if(!he[i]){
su[++tot]=i;
phi[i]=i-;
}
for(int j=;j<=tot;j++){
if(i*su[j]>=n)break;
he[i*su[j]]=;
if(i%su[j]==){
phi[i*su[j]]=phi[i]*su[j];break;
}
else phi[i*su[j]]=phi[i]*(su[j]-);
}
}
return;
}
int main(){
Euler();
int t;
scanf("%d",&t);
while(t--){
int n;ll ans=;
scanf("%d",&n);
for(int i=;i*i<=n;i++){
if(n%i)continue;
int k=n/i;
ans+=(ll)(phi[k]*k+)>>;
if(i*i<n)ans+=(ll)(phi[i]*i+)>>;
}
printf("%lld\n",ans*n);
}
return ;
}