问题描述
我遇到问题,找到了解决方案,但我认为这样做是错误的方法.也许,还有一种更规范"的方式来做到这一点.
I had a problem and I found a solution but I feel it's the wrong way to do it.Maybe, there is a more 'canonical' way to do it.
问题
我有两个要合并的数据框,没有多余的列,也没有擦除现有的信息.例子:
I have two dataframe that I would like to merge without having extra column and without erasing existing infos. Example :
现有数据框(df)
A A2 B
0 1 4 0
1 2 5 1
要合并的数据框(df2)
Dataframe to merge (df2)
A A2 B
0 1 4 2
1 3 5 2
如果列'A'和'A2'对应,我想用df2
更新df
.结果将是(:
I would like to update df
with df2
if columns 'A' and 'A2' corresponds.The result would be (:
A A2 B
0 1 4 2.0 <= Update value ONLY
1 2 5 1.0
这是我的解决方案,但我认为这不是一个很好的解决方案.
Here is my solution, but I think it's not a really good one.
import pandas as pd
df = pd.DataFrame([[1,4,0],[2,5,1]],columns=['A','A2','B'])
df2 = pd.DataFrame([[1,4,2],[3,5,2]],columns=['A','A2','B'])
df = df.merge(df2,on=['A', 'A2'],how='left')
df['B_y'].fillna(0, inplace=True)
df['B'] = df['B_x']+df['B_y']
df = df.drop(['B_x','B_y'], axis=1)
print(df)
有人能做得更好吗?谢谢!
Does anyone has a better way to do ?Thanks !
推荐答案
是的,无需合并即可完成:
Yes, it can be done without merge:
rows = (df[['A','A2']] == df2[['A','A2']]).all(axis=1)
df.loc[rows,'B'] = df2.loc[rows,'B']
这篇关于Pandas(Python)-使用条件从另一个数据框更新数据框的列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!