1 概念

Scala中的Actor能够实现并行编程的强大功能,它是基于事件模型的并发机制,Scala是运用消息(message)的发送、接收来实现多线程的。使用Scala能够更容易地实现多线程应用的开发。

2 传统java并发编程与scala actor编程的区别

大数据学习——actor编程-LMLPHP

对于Java,我们都知道它的多线程实现需要对共享资源(变量、对象等)使用synchronized 关键字进行代码块同步、对象锁互斥等等。而且,常常一大块的try…catch语句块中加上wait方法、notify方法、notifyAll方法是让人很头疼的。原因就在于Java中多数使用的是可变状态的对象资源,对这些资源进行共享来实现多线程编程的话,控制好资源竞争与防止对象状态被意外修改是非常重要的,而对象状态的不变性也是较难以保证的。 而在Scala中,我们可以通过复制不可变状态的资源(即对象,Scala中一切都是对象,连函数、方法也是)的一个副本,再基于Actor的消息发送、接收机制进行并行编程

3 actor方法执行顺序

1.首先调用start()方法启动Actor

2.调用start()方法后其act()方法会被执行

3.向Actor发送消息

发送消息的方式

!

发送异步消息,没有返回值。

!?

发送同步消息,等待返回值。

!!

发送异步消息,返回值是 Future[Any]。

例子

添加依赖

<!--scala actor-->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-actors</artifactId>
<version>2.10.5</version>
</dependency>

1

package main.scala.com

import scala.actors.Actor

/**
* Created by Administrator on 2019/6/4.
*/
object MyActor1 extends Actor { //重写act方法 def act(): Unit = {
for (i <- 1 to 10) {
println("actor-1" + i)
Thread.sleep(2000)
}
}
} object MyActor2 extends Actor {
//重写act方法
def act() {
for (i <- 1 to 10) {
println("actor-2 " + i)
Thread.sleep(2000)
}
}
}
object ActorTest extends App{
//启动Actor
MyActor1.start()
MyActor2.start()
}

运行结果

大数据学习——actor编程-LMLPHP

说明:上面分别调用了两个单例对象的start()方法,他们的act()方法会被执行,相同与在java中开启了两个线程,线程的run()方法会被执行

注意:这两个Actor是并行执行的,act()方法中的for循环执行完成后actor程序就退出了

可能遇见的问题

1 Exception in thread "main" java.lang.NoSuchMethodError: scala.actors.AbstractActor.$init$(Lscala/actors/AbstractActor;)V

解决办法

使用scala2.12.x的版本运行Actor,会报这种错误。

报错原因:scala版本不匹配,

解决方法:创建新工程,选择scala2.10.x的版本

大数据学习——actor编程-LMLPHP

2

大数据学习——actor编程-LMLPHP

解决方案:项目->open module setting->Modules->Dependencies  加上scala sdk的library

大数据学习——actor编程-LMLPHP

2

package main.scala.com

import scala.actors.Actor

/**
* Created by Administrator on 2019/6/4.
*/
class MyActor extends Actor { override def act(): Unit = {
while (true) {
receive {
case "start" => {
println("starting ...")
Thread.sleep(5000)
println("started")
}
case "stop" => {
println("stopping ...")
Thread.sleep(5000)
println("stopped ...")
}
}
}
}
} object MyActor {
def main(args: Array[String]) {
val actor = new MyActor
actor.start()
actor ! "start"
actor ! "stop"
println("消息发送完成!")
}
}

大数据学习——actor编程-LMLPHP

说明:在act()方法中加入了while (true) 循环,就可以不停的接收消息

注意:发送start消息和stop的消息是异步的,但是Actor接收到消息执行的过程是同步的按顺序执行

3

(react方式会复用线程,比receive更高效)

package main.scala.com

import scala.actors.Actor

/**
* Created by Administrator on 2019/6/4.
*/
class YourActor extends Actor { override def act(): Unit = {
loop {
react {
case "start" => {
println("starting ...")
Thread.sleep(5000)
println("started")
}
case "stop" => {
println("stopping ...")
Thread.sleep(8000)
println("stopped ...")
}
}
}
}
} object YourActor {
def main(args: Array[String]) {
val actor = new YourActor
actor.start()
actor ! "start"
actor ! "stop"
println("消息发送完成!")
}
}

大数据学习——actor编程-LMLPHP

说明: react 如果要反复执行消息处理,react外层要用loop,不能用while

4

package main.scala.com

import scala.actors.Actor

/**
* Created by Administrator on 2019/6/4.
*/
class AppleActor extends Actor { def act(): Unit = {
while (true) {
receive {
case "start" => println("starting ...")
case SyncMsg(id, msg) => {
println(id + ",sync " + msg)
Thread.sleep(5000)
sender ! ReplyMsg(3, "finished")
}
case AsyncMsg(id, msg) => {
println(id + ",async " + msg)
Thread.sleep(5000)
}
}
}
}
} object AppleActor {
def main(args: Array[String]) {
val a = new AppleActor
a.start()
//异步消息
a ! AsyncMsg(1, "hello actor")
println("异步消息发送完成")
//同步消息
//val content = a.!?(1000, SyncMsg(2, "hello actor"))
//println(content)
val reply = a !! SyncMsg(2, "hello actor")
println(reply.isSet)
//println("123")
val c = reply.apply()
println(reply.isSet)
println(c)
}
} case class SyncMsg(id: Int, msg: String) case class AsyncMsg(id: Int, msg: String) case class ReplyMsg(id: Int, msg: String)

大数据学习——actor编程-LMLPHP

5  用actor并发编程写一个单机版的WorldCount,将多个文件作为输入,计算完成后将多个任务汇总,得到最终的结果

package main.scala.com

import java.io.File

import scala.actors.{Actor, Future}
import scala.collection.mutable
import scala.io.Source /**
* Created by Administrator on 2019/6/4.
*/
class Task extends Actor { override def act(): Unit = {
loop {
react {
case SubmitTask(fileName) => {
val contents = Source.fromFile(new File(fileName)).mkString
val arr = contents.split("\r\n")
val result = arr.flatMap(_.split(" ")).map((_, 1)).groupBy(_._1).mapValues(_.length)
//val result = arr.flatMap(_.split(" ")).map((_, 1)).groupBy(_._1).mapValues(_.foldLeft(0)(_ + _._2))
sender ! ResultTask(result)
}
case StopTask => {
exit()
}
}
}
}
} object WorkCount {
def main(args: Array[String]) {
val files = Array("c://words.txt", "c://words.log") val replaySet = new mutable.HashSet[Future[Any]]
val resultList = new mutable.ListBuffer[ResultTask] for (f <- files) {
val t = new Task
val replay = t.start() !! SubmitTask(f)
replaySet += replay
} while (replaySet.size > 0) {
val toCumpute = replaySet.filter(_.isSet)
for (r <- toCumpute) {
val result = r.apply()
resultList += result.asInstanceOf[ResultTask]
replaySet.remove(r)
}
Thread.sleep(100)
}
val finalResult = resultList.map(_.result).flatten.groupBy(_._1).mapValues(x => x.foldLeft(0)(_ + _._2))
println(finalResult)
}
} case class SubmitTask(fileName: String) case object StopTask case class ResultTask(result: Map[String, Int])
05-27 01:41