题目链接
Title Solution
这一道题显然可以看出公式为:
\[ans=C_{n}^{w_1}*C_{n-w}^{w_2}*...*C_{w_m}^{w_m}
\]
\]
然后就可以用扩展Lucas求解了。
至于扩展Lucas:戳这
code
#include<bits/stdc++.h>
#define rg register
#define int long long
#define file(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
int read(){
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
}
void exgcd(int a,int b ,int &x,int &y){
if(!b){x=1,y=0;return;}
exgcd(b,a%b,x,y);
int t=x;
x=y,y=t-(a/b)*y;
}
int inv(int a,int b){
int x,y;
return exgcd(a,b,x,y),(x%b+b)%b;
}
int ksm(int a,int b,int p){
int ans=1;
while(b){
if(b&1)
ans=a*ans%p;
a=a*a%p;
b>>=1;
}
return ans%p;
}
int crt(int x,int p,int mod){
return inv(p/mod,mod)*(p/mod)*x;
}
int fac(int x,int a,int b){
if(!x)
return 1;
int ans=1;
for(int i=1;i<=b;i++)
if(i%a)
ans*=i,ans%=b;
ans=ksm(ans,x/b,b);
for(int i=1;i<=x%b;i++)
if(i%a)
ans*=i,ans%=b;
return ans*fac(x/a,a,b)%b;
}
int C(int n,int m,int a,int b){
int N=fac(n,a,b),M=fac(m,a,b),Z=fac(n-m,a,b),sum=0;
for(int i=n;i;i=i/a)
sum+=i/a;
for(int i=m;i;i=i/a)
sum-=i/a;
for(int i=n-m;i;i=i/a)
sum-=i/a;
return N*ksm(a,sum,b)%b*inv(M,b)%b*inv(Z,b)%b;
}
int exlucas(int n,int m,int p){
int t=p,ans=0;
for(int i=2;i*i<=p;i++){
int k=1;
while(t%i==0)
k*=i,t/=i;
ans+=crt(C(n,m,i,k),p,k),ans%=p;
}
if(t>1)
ans+=crt(C(n,m,t,t),p,t),ans%=p;
return ans%p;
}
int a[11];
void slove(){
int p=read(),n=read(),m=read(),sum=0;
for(int i=1;i<=m;i++)
a[i]=read(),sum+=a[i];
if(n<sum)
printf("Impossible\n"),exit(0);
int ans=1;
for(int i=1;i<=m;i++)
ans*=exlucas(n,a[i],p),ans%=p,n-=a[i];
printf("%lld",ans%p);
}
main(){
slove();
return 0;
}