Matrix Power Series
Time Limit: 3000MS | Memory Limit: 131072K | |
Total Submissions: 23187 | Accepted: 9662 |
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A + A + … + A.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 10) and m (m < 10). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
/*
矩阵乘法经典+二分
Sk=A+A2+A3+...+Ak
=(1+Ak/2)*(A+A2+A3+...+Ak/2)+{Ak}
=(1+Ak/2)*(Sk/2)+{Ak}
当k为偶数时不要大括号里面的数
*/
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std;
int n,m,k;
struct matrix
{
int a[][];
void init()
{
memset(a,,sizeof a);
for(int i=;i<;i++) a[i][i]=;
}
}; void print(matrix s)
{
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
if (j)
printf(" ");
printf("%d",s.a[i][j]%m);
}
printf("\n");
}
} matrix m_add(matrix a,matrix b)//加法
{
matrix c;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
c.a[i][j]=((a.a[i][j]+b.a[i][j])%m);
return c;
} matrix m_mul(matrix a,matrix b)//乘法
{
matrix c;
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
c.a[i][j]=;
for(int k=;k<n;k++)
c.a[i][j]+=((a.a[i][k]*b.a[k][j])%m);
c.a[i][j]%=m;
}
}
return c;
} matrix mul(matrix s,int k)//矩阵快速幂
{
matrix ans;ans.init();
while(k>=)
{
if(k&) ans=m_mul(ans,s);
k>>=;
s=m_mul(s,s);
}
return ans;
} matrix sum(matrix s,int k)//矩阵前k项求和
{
if(k==) return s;
matrix tmp;tmp.init();
tmp=m_add(tmp,mul(s,k>>));//计算1+A^(k/2)
tmp=m_mul(tmp,sum(s,k>>));//计算(1+A^(k/2))*(A+A^2+A^3+...+A^(k/2))
if(k&) tmp=m_add(tmp,mul(s,k));
return tmp;
} int main()
{
while(cin>>n>>k>>m)
{
matrix s;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
scanf("%d",&s.a[i][j]);
s=sum(s,k);
print(s);
}
}