Scaena Felix
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 101 Accepted Submission(s): 49
Problem Description
Given a parentheses sequence consist of '(' and ')', a modify can filp a parentheses, changing '(' to ')' or ')' to '('.
If we want every not empty <b>substring</b> of this parentheses sequence not to be "paren-matching", how many times at least to modify this parentheses sequence?
For example, "()","(())","()()" are "paren-matching" strings, but "((", ")(", "((()" are not.
Input
The first line of the input is a integer T, meaning that there are T test cases.
Every test cases contains a parentheses sequence S only consists of '(' and ')'.
1≤|S|≤1,000.
Output
For every test case output the least number of modification.
Sample Input
3
()
((((
(())
()
((((
(())
Sample Output
1
0
2
0
2
题解:水题。。。。匹配括号的个数。。。
代码:
#include<stdio.h>
#include<stack>
using namespace std;
const int MAXN=;
char m[MAXN];
int main(){
int T;
scanf("%d",&T);
while(T--){
stack<char>st;
scanf("%s",m);
int k=;
for(int i=;m[i];i++){
if(m[i]=='(')st.push(m[i]);
else if(!st.empty())st.pop(),k++;
}
printf("%d\n",k);
}
return ;
}