SparkContext的初始化

SparkContext是应用启动时创建的Spark上下文对象,是进行Spark应用开发的主要接口,是Spark上层应用与底层实现的中转站(SparkContext负责给executors发送task)。

SparkContext在初始化过程中,主要涉及一下内容:

生成SparkConf

SparkContext的构造函数中最重要的入參是SparkConf。SparkContext进行初始化的时候,首先要依据初始化入參来构建SparkConf对象。进而再去创建SparkEnv。

【Spark】SparkContext源代码解读-LMLPHP

创建SparkConf对象来管理spark应用的属性设置。

SparkConf类比較简单。是通过一个HashMap容器来管理key、value类型的属性。

下图为SparkConf类声明,当中setting变量为HashMap容器:

【Spark】SparkContext源代码解读-LMLPHP

以下是SparkContext类中。关于SparkConf对象的拷贝过程:

【Spark】SparkContext源代码解读-LMLPHP

创建LiveListenerBus监听器

这是典型的观察者模式,向LiveListenerBus类注冊不同类型的SparkListenerEvent事件,SparkListenerBus会遍历它的全部监听者SparkListener,然后找出事件对应的接口进行响应。

【Spark】SparkContext源代码解读-LMLPHP

以下是SparkContext创建LiveListenerBus对象:

  // An asynchronous listener bus for Spark events
private[spark] val listenerBus = new LiveListenerBus

创建SparkEnv执行环境

在SparkEnv中创建了MapOutputTracker、MasterActor、BlockManager、CacheManager、HttpFileServer一系列对象。

下图为生成SparkEnv的代码:

【Spark】SparkContext源代码解读-LMLPHP

SparkEnv的构造函数入參列表为:

class SparkEnv (
val executorId: String,
val actorSystem: ActorSystem,
val serializer: Serializer,
val closureSerializer: Serializer,
val cacheManager: CacheManager,
val mapOutputTracker: MapOutputTracker,
val shuffleManager: ShuffleManager,
val broadcastManager: BroadcastManager,
val blockTransferService: BlockTransferService,
val blockManager: BlockManager,
val securityManager: SecurityManager,
val httpFileServer: HttpFileServer,
val sparkFilesDir: String,
val metricsSystem: MetricsSystem,
val shuffleMemoryManager: ShuffleMemoryManager,
val outputCommitCoordinator: OutputCommitCoordinator,
val conf: SparkConf) extends Logging

这里说明几个入參的作用:

创建SparkUI

以下是SparkContext初始化SparkUI的代码:

【Spark】SparkContext源代码解读-LMLPHP

当中。在SparkUI对象初始化函数中,注冊了StorageStatusListener监听器,负责监听Storage的变化及时的展示到Spark web页面上。

attachTab方法中加入对象正是我们在Spark Web页面中看到的那个标签。

  /** Initialize all components of the server. */
def initialize() {
attachTab(new JobsTab(this))
val stagesTab = new StagesTab(this)
attachTab(stagesTab)
attachTab(new StorageTab(this))
attachTab(new EnvironmentTab(this))
attachTab(new ExecutorsTab(this))
attachHandler(createStaticHandler(SparkUI.STATIC_RESOURCE_DIR, "/static"))
attachHandler(createRedirectHandler("/", "/jobs", basePath = basePath))
attachHandler(
createRedirectHandler("/stages/stage/kill", "/stages", stagesTab.handleKillRequest))
}

创建TaskScheduler和DAGScheduler并启动执行

在SparkContext中, 最基本的初始化工作就是创建TaskScheduler和DAGScheduler, 这两个就是Spark的核心所在。

Spark的设计很的干净, 把整个DAG抽象层从实际的task执行中剥离了出来DAGScheduler, 负责解析spark命令,生成stage, 形成DAG, 终于划分成tasks, 提交给TaskScheduler, 他仅仅完毕静态分析TaskScheduler,专门负责task执行, 他仅仅负责资源管理, task分配, 执行情况的报告。

这样设计的优点, 就是Spark能够通过提供不同的TaskScheduler简单的支持各种资源调度和执行平台

以下代码是依据Spark的执行模式来选择对应的SchedulerBackend,同一时候启动TaskScheduler:

【Spark】SparkContext源代码解读-LMLPHP

当中。createTaskScheduler最为关键的一点就是依据master变量来推断Spark当前的部署方式,进而生成对应的SchedulerBackend的不同子类。创建的SchedulerBackend放置在TaskScheduler中,在兴许的Task分发过程中扮演着重要角色。

TaskScheduler.start的目的是启动对应的SchedulerBackend,并启动定时器进行检測。以下是该函数源代码(定义在TaskSchedulerImpl.scala文件里):

  override def start() {
backend.start() if (!isLocal && conf.getBoolean("spark.speculation", false)) {
logInfo("Starting speculative execution thread")
import sc.env.actorSystem.dispatcher
sc.env.actorSystem.scheduler.schedule(SPECULATION_INTERVAL milliseconds,
SPECULATION_INTERVAL milliseconds) {
Utils.tryOrExit { checkSpeculatableTasks() }
}
}
}

加入EventLoggingListener监听器

这个默认是关闭的,能够通过spark.eventLog.enabled配置开启。

它主要功能是以json格式记录发生的事件:

  // Optionally log Spark events
private[spark] val eventLogger: Option[EventLoggingListener] = {
if (isEventLogEnabled) {
val logger =
new EventLoggingListener(applicationId, eventLogDir.get, conf, hadoopConfiguration)
logger.start()
listenerBus.addListener(logger)
Some(logger)
} else None
}

加入SparkListenerEvent事件

往LiveListenerBus中加入了SparkListenerEnvironmentUpdate、SparkListenerApplicationStart两类事件,对这两种事件监听的监听器就会调用onEnvironmentUpdate、onApplicationStart方法进行处理。

  setupAndStartListenerBus()
postEnvironmentUpdate()
postApplicationStart()

SparkContext类中的关键函数

textFile

要加载被处理的数据, 最经常使用的textFile, 事实上就是生成HadoopRDD, 作为起始的RDD

  /**
* Read a text file from HDFS, a local file system (available on all nodes), or any
* Hadoop-supported file system URI, and return it as an RDD of Strings.
*/
def textFile(path: String, minPartitions: Int = defaultMinPartitions): RDD[String] = {
assertNotStopped()
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
minPartitions).map(pair => pair._2.toString).setName(path)
} /** Get an RDD for a Hadoop file with an arbitrary InputFormat
*
* '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
*/
def hadoopFile[K, V](
path: String,
inputFormatClass: Class[_ <: InputFormat[K, V]],
keyClass: Class[K],
valueClass: Class[V],
minPartitions: Int = defaultMinPartitions
): RDD[(K, V)] = {
assertNotStopped()
// A Hadoop configuration can be about 10 KB, which is pretty big, so broadcast it.
val confBroadcast = broadcast(new SerializableWritable(hadoopConfiguration))
val setInputPathsFunc = (jobConf: JobConf) => FileInputFormat.setInputPaths(jobConf, path)
new HadoopRDD(
this,
confBroadcast,
Some(setInputPathsFunc),
inputFormatClass,
keyClass,
valueClass,
minPartitions).setName(path)
}

runJob

关键在于调用了dagScheduler.runJob

  /**
* Run a function on a given set of partitions in an RDD and pass the results to the given
* handler function. This is the main entry point for all actions in Spark. The allowLocal
* flag specifies whether the scheduler can run the computation on the driver rather than
* shipping it out to the cluster, for short actions like first().
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
allowLocal: Boolean,
resultHandler: (Int, U) => Unit) {
if (stopped) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,
resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}

说明

以上的源代码解读基于spark-1.3.1源代码project文件

转载请注明作者Jason Ding及其出处

GitCafe博客主页(http://jasonding1354.gitcafe.io/)

Github博客主页(http://jasonding1354.github.io/)

CSDN博客(http://blog.csdn.net/jasonding1354)

简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)

Google搜索jasonding1354进入我的博客主页

05-11 11:03
查看更多