Description
Solution
这道题的操作是真的得服气。。感谢各位大佬的指导。
首先我们看看答案的最大值:10。哦不,这不可能存在,我们肯定不可能一轮轮枚举点进行扩展的。
所以,接下来我们进入正题:
由于我们不可能计算出所有具体的点,我们肯定得依靠某种玄学秘法来表示原本的点(不然你没法往下推啊qaq),然后通过神秘手段来搞事情。
em我们把一个点(x,y)看做是一条x->y的有向边。如果有x->y,y->z,则我们可以加上边z->x。
这些点将构成若干联通块,我们对其进行染色。
我们一共染3种色0,1,2。如果有x->y,则y的颜色为(x的颜色+1)%3。
对于某个联通块,有3种情况。
1,一共只用了两种颜色并且没有一个点被染了两种色,我们可以形象地理解为该图只有两层,但是我们需要3层才可以额外加边,答案不变。
2,一共刚好用了3色并且没有一个点被染了两种色,则2色的可以连向0色,0色的可以连向1色,1色的可以连向2色,统计加了多少边就好。
3,有一个点被染了两种色,图中出现环。环中任意两点x,y将会存在x->y,y->x。然后可证明,这时如果往这个环外多加一个点,在操作完成后也会满足任意两点x,y有x->y,y->x。即该联通块的边总数为点数的平方。
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,x,y;
struct node{int y,nxt,t;
}g[];int h[],tot=;
int cnt[],col[],_point,_link;
bool vis[],_is;
void dfs(int x)
{
cnt[col[x]]++;vis[x]=;_point++;
for(int i=h[x];i;i=g[i].nxt)
{
_link+=(g[i].t==);
if (!vis[g[i].y]) col[g[i].y]=(col[x]+g[i].t+)%,dfs(g[i].y);
else if (col[g[i].y]!=(col[x]+g[i].t+)%) _is=;
}
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
g[++tot]=node{y,h[x],};h[x]=tot;
g[++tot]=node{x,h[y],-};h[y]=tot;
}
long long ans=;
for (int i=;i<=n;i++)
{
if (vis[i]) continue;
_is=;_point=_link=;cnt[]=cnt[]=cnt[]=;
dfs(i);
if (!_is) ans+=1ll*_point*_point;
else if (cnt[]&&cnt[]&&cnt[]) ans+=1ll*cnt[]*cnt[]+1ll*cnt[]*cnt[]+1ll*cnt[]*cnt[];
else ans+=_link;
}
printf("%lld",ans); }