numpy模块

numpy模块:用来做数据分析,对numpy数组(既有行又有列)--矩阵进行科学运算

在使用的时候,使用方法与其他的模块有一点不一样

import numpy as np

具体的使用方法

1.创建numpy数组---》可变

# 一组数据相乘
import numpy as np arr1 = np.array([1,2,3])
arr2 = np.array([4,5,6]) print(arr1*arr2) # 输出为 [ 4 10 18]

2.数组的维数

# 一维数组(不在讨论范围内)
arr1 = np.array([1, 2, 4])
print(type(arr), arr1) #输出结果为 :<class 'numpy.ndarray'> [1 2 4] # 二维数组(******)
arr2 = np.array([
[1, 2, 3],
[4, 5, 6]
])
print(arr2) #输出结果为 :
[[1 2 3]
[4 5 6]] # 三维数组(不在讨论范围内)--》tensorflow
arr3 = np.array([
[[1, 2, 3],
[4, 5, 6]],
[[1, 2, 3],
[4, 5, 6]],
])
print(arr3) #输出结果为 :
[[[1 2 3]
[4 5 6]] [[1 2 3]
[4 5 6]]]
#T  数组的转置(对高维数组而言) --> 行列互换,转置
print(arr, '\n', arr.T) # size 数组元素的个数
print(arr.size) # ndim 数组的维数
print(arr.ndim)
print(arr3.ndim) # shape 数组的维度大小(以元组形式)
print(arr.shape[0])
print(arr.shape[1]) # astype 类型转换
arr = arr.astype(np.float64)
print(arr) # 切片numpy数组
lt = [1, 2, 3]
print(lt[:])
arr = np.array([
[1, 2, 3],
[4, 5, 6]
])
print(arr[:, :]) # 行,列
print(arr[0, 0])
print(arr[0, :])
print(arr[:, -2:]) # 逻辑取值
print(arr[arr > 4]) # 赋值
lt = [1, 2, 3]
lt[:] = [0, 0, 0]
print(lt)
arr = np.array([
[1, 2, 3],
[4, 5, 6]
])
arr[0, 0] = 0
print(arr)
arr[0, :] = 0
print(arr) arr[:, :] = 0
print(arr) # 数组的合并
arr1 = np.array([
[1, 2, 3],
[4, 5, 6]
]) arr2 = np.array([
[7, 8, 9],
['a', 'b', 'c']
]) print(np.hstack((arr1, arr2))) # 只能放元组 print(np.vstack((arr1, arr2))) print(np.concatenate((arr1, arr2), axis=1)) # 默认以列合并 # 0表示列,1表示行 # 通过函数创建numpy数组 print(np.ones((2, 3))) print(np.zeros((2, 3))) print(np.eye(3, 3)) print(np.linspace(1, 100, 10)) print(np.arange(2, 10)) arr1 = np.zeros((1, 12))
print(arr1.reshape((3, 4))) # 重构形状 # numpy数组运算 # +-*'
arr1 = np.ones((3, 4)) * 4
print(arr1) # numpy数组运算函数 print(np.sin(arr1)) # 矩阵运算--点乘 arr1 = np.array([
[1, 2, 3],
[4, 5, 6]
]) arr2 = np.array([
[1, 2],
[4, 5],
[6, 7]
])
# 2* 3 3*2
print(np.dot(arr1, arr2)) # 求逆
arr = np.array([[1, 2, 3], [4, 5, 6], [9, 8, 9]])
print(np.linalg.inv(arr)) # numpy数组数学和统计方法
print(np.sum(arr[0, :])) # numpy.random生成随机数(******)
print(np.random.rand(3, 4)) print(np.random.random((3, 4))) # np.random.seed(1)
print(np.random.random((3, 4))) s = np.random.RandomState(1)
print(s.random((3, 4))) arr = np.array([[1, 2, 3], [4, 5, 6], [9, 8, 9]])
np.random.shuffle(arr)
print(arr)
#仅作了解
# dtype 数组元素的数据类型,numpy数组是属于python解释器的;int32/float64属于numpy的
print(arr.dtype) # 针对一维
print(np.random.choice([1, 2, 3], 1)) # 针对某一个范围
print(np.random.randint(1, 100, (3, 4)))ython

matplotlib模块

matplotlib模块:画图

1.条形图

from matplotlib import pyplot as plt  # 约定俗成
from matplotlib.font_manager import FontProperties # 修改字体 font = FontProperties(fname='C:\Windows\Fonts\simsun.ttc') plt.style.use('ggplot') # 设置背景 clas = ['3班', '4班', '5班', '6班']
students = [50, 55, 45, 60]
clas_index = range(len(clas)) # [0,1,2,3] [50,55,45,60]
plt.bar(clas_index,students,color='darkblue') plt.xlabel('学生',fontproperties=font)
plt.ylabel('学生人数',fontproperties=font)
plt.title('班级-学生人数',fontproperties=font,fontsize=20,fontweight=25)
plt.xticks(clas_index,clas,fontproperties=font) plt.show()

2.直方图

import numpy as np
from matplotlib import pyplot as plt # 约定俗成
from matplotlib.font_manager import FontProperties # 修改字体 font = FontProperties(fname='C:\Windows\Fonts\simsun.ttc') plt.style.use('ggplot') x1 = np.random.randn(10000) x2 = np.random.randn(10000) fig = plt.figure() # 生成一张画布
ax1 = fig.add_subplot(1, 2, 1) # 1行2列取第一个
ax2 = fig.add_subplot(1, 2, 2) ax1.hist(x1, bins=50,color='darkblue')
ax2.hist(x2, bins=50,color='y') fig.suptitle('两个正太分布',fontproperties=font,fontsize=20)
ax1.set_title('x1的正太分布',fontproperties=font) # 加子标题
ax2.set_title('x2的正太分布',fontproperties=font)
plt.show()

3.折线图

import numpy as np
from matplotlib import pyplot as plt # 约定俗成
from matplotlib.font_manager import FontProperties # 修改字体 font = FontProperties(fname='C:\Windows\Fonts\simsun.ttc') plt.style.use('ggplot') x1 = np.random.randn(10000) x2 = np.random.randn(10000) fig = plt.figure() # 生成一张画布
ax1 = fig.add_subplot(1, 2, 1) # 1行2列取第一个
ax2 = fig.add_subplot(1, 2, 2) ax1.hist(x1, bins=50,color='darkblue')
ax2.hist(x2, bins=50,color='y') fig.suptitle('两个正太分布',fontproperties=font,fontsize=20)
ax1.set_title('x1的正太分布',fontproperties=font) # 加子标题
ax2.set_title('x2的正太分布',fontproperties=font)
plt.show()

4.散点图+直线图

font = FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

plt.style.use('ggplot')

fig = plt.figure()
ax1 = fig.add_subplot(1, 2, 1)
ax2 = fig.add_subplot(1, 2, 2) x = np.arange(20)
y = x ** 2 x2 = np.arange(20)
y2 = x2 ax1.scatter(x, y, c='r', label='红')
ax1.scatter(x2, y2, c='b', label='蓝') ax2.plot(x, y)
ax2.plot(x2, y2) fig.suptitle('两张图', fontproperties=font, fontsize=15)
ax1.set_title('散点图', fontproperties=font)
ax2.set_title('折线图', fontproperties=font)
ax1.legend(prop=font)
plt.show()

pandas模块

功能介绍

pandas是python数据分析的核心模块。它主要提供了五大功能:

  1. 支持文件存取操作,支持数据库(sql)、html、json、pickle、csv(txt、excel)、sas、stata、hdf等。
  2. 支持增删改查、切片、高阶函数、分组聚合等单表操作,以及和dict、list的互相转换。
  3. 支持多表拼接合并操作。
  4. 支持简单的绘图操作。
  5. 支持简单的统计分析操作。

具体用法

# pd从excel中读取 DataFrame数据类型
np.random.seed(10) index = pd.date_range('2019-01-01', periods=6, freq='M')
print(index)
columns = ['c1', 'c2', 'c3', 'c4']
print(columns)
val = np.random.randn(6, 4)
print(val) df = pd.DataFrame(index=index, columns=columns, data=val)
print(df) # 保存文件,读出成文件
df.to_excel('date_c.xlsx') # 读出文件
df = pd.read_excel('date_c.xlsx', index_col=[0])
print(df) print(df.index)
print(df.columns)
print(df.values) print(df[['c1', 'c2']]) # 按照index取值
# print(df['2019-01-31'])
print(df.loc['2019-01-31'])
print(df.loc['2019-01-31':'2019-05-31']) # 按照values取值
print(df)
print(df.iloc[0, 0]) df.iloc[0, :] = 0
print(df)
05-23 03:11
查看更多