deck-overlay中
首先使用d3中的scaleQuantile将数据进行分类,scaleQuantile方法是d3中的一种数据分类方法(https://www.cnblogs.com/kidsitcn/p/7182274.html)
https://raw.githubusercontent.com/uber-common/deck.gl-data/master/examples/arc/counties.json
_getArcs({data, selectedFeature}) {
if (!data || !selectedFeature) {
return null;
} const {flows, centroid} = selectedFeature.properties; const arcs = Object.keys(flows).map(toId => {
const f = data[toId];
return {
source: centroid,
target: f.properties.centroid,
value: flows[toId]
};
}); const scale = scaleQuantile()
.domain(arcs.map(a => Math.abs(a.value)))
.range(inFlowColors.map((c, i) => i)); arcs.forEach(a => {
a.gain = Math.sign(a.value);
a.quantile = scale(Math.abs(a.value));
}); return arcs;
}
scaleQuantile是一种将连续的值转化成离散的方法,最终离散成这几种颜色分类
arc-layer中
这里还是使用了实例化的方法,先添加一堆实例化变量:
initializeState() {
const attributeManager = this.getAttributeManager(); /* eslint-disable max-len */
attributeManager.addInstanced({
instancePositions: {
size: 4,
transition: true,
accessor: ['getSourcePosition', 'getTargetPosition'],
update: this.calculateInstancePositions
},
instanceSourceColors: {
size: 4,
type: GL.UNSIGNED_BYTE,
transition: true,
accessor: 'getSourceColor',
update: this.calculateInstanceSourceColors
},
instanceTargetColors: {
size: 4,
type: GL.UNSIGNED_BYTE,
transition: true,
accessor: 'getTargetColor',
update: this.calculateInstanceTargetColors
}
});
/* eslint-enable max-len */
}
然后是制作图形,这里使用50个点来模拟一条抛物线的效果
_getModel(gl) {
let positions = [];
const NUM_SEGMENTS = 50; // 利用50个点来模拟曲线
/*
* (0, -1)-------------_(1, -1)
* | _,-" |
* o _,-" o
* | _,-" |
* (0, 1)"-------------(1, 1)
*/
for (let i = 0; i < NUM_SEGMENTS; i++) { // 使用三角带的方式来绘制三角形,同时这里的-1和1也是为了在绘制宽度的时候确定法向量的偏移
positions = positions.concat([i, -1, 0, i, 1, 0]);
} const model = new Model(
gl,
Object.assign({}, this.getShaders(), {
id: this.props.id,
geometry: new Geometry({
drawMode: GL.TRIANGLE_STRIP,
attributes: {
positions: new Float32Array(positions)
}
}),
isInstanced: true,
shaderCache: this.context.shaderCache // 缓存着色器,我怀疑自己写的hexagon偏慢也跟这个有关系
})// 绘制物体,这里是5.x的版本在新的版本中还要设定instanceCount参数,来控制绘制实例的数量
); model.setUniforms({numSegments: NUM_SEGMENTS}); return model;
}
下面是计算一些实例变量,根据data的数量来控制,但是luma好像会默认给实例变量的数组分配大小,实际的value中有一些多余的空间,如果数据量小的话,可能绘制不出来;比如:data有22条线,按照如下计算,instancePositions可用的value就只有88个元素。
calculateInstancePositions(attribute) {
const {data, getSourcePosition, getTargetPosition} = this.props;
const {value, size} = attribute;
let i = 0;
for (const object of data) {
const sourcePosition = getSourcePosition(object);
const targetPosition = getTargetPosition(object);
value[i + 0] = sourcePosition[0];
value[i + 1] = sourcePosition[1];
value[i + 2] = targetPosition[0];
value[i + 3] = targetPosition[1];
i += size;
}
} calculateInstancePositions64Low(attribute) {
const {data, getSourcePosition, getTargetPosition} = this.props;
const {value, size} = attribute;
let i = 0;
for (const object of data) {
const sourcePosition = getSourcePosition(object);
const targetPosition = getTargetPosition(object);
value[i + 0] = fp64LowPart(sourcePosition[0]);
value[i + 1] = fp64LowPart(sourcePosition[1]);
value[i + 2] = fp64LowPart(targetPosition[0]);
value[i + 3] = fp64LowPart(targetPosition[1]);
i += size;
}
} calculateInstanceSourceColors(attribute) {
const {data, getSourceColor} = this.props;
const {value, size} = attribute;
let i = 0;
for (const object of data) {
const color = getSourceColor(object);
value[i + 0] = color[0];
value[i + 1] = color[1];
value[i + 2] = color[2];
value[i + 3] = isNaN(color[3]) ? 255 : color[3];
i += size;
}
} calculateInstanceTargetColors(attribute) {
const {data, getTargetColor} = this.props;
const {value, size} = attribute;
let i = 0;
for (const object of data) {
const color = getTargetColor(object);
value[i + 0] = color[0];
value[i + 1] = color[1];
value[i + 2] = color[2];
value[i + 3] = isNaN(color[3]) ? 255 : color[3];
i += size;
}
}
着色器代码
#define SHADER_NAME arc-layer-vertex-shader attribute vec3 positions; // 几何图形的坐标,同时这里面也编码了一些信息,x代表线段索引,y可以代表偏移方向
// 本次可用的一些实例变量
attribute vec4 instanceSourceColors;// 起点的颜色
attribute vec4 instanceTargetColors; // 终点的颜色
attribute vec4 instancePositions; // 前两个值记录了起点经纬度,后两个值记录了终点经纬度
attribute vec3 instancePickingColors; uniform float numSegments; // 抛物线的线段数量
uniform float strokeWidth; // 线宽度
uniform float opacity; varying vec4 vColor; // source和target是在3d空间中的单位,ratio代表本此线段在总线段数目的比值范围在0~1,返回值时抛物线高度的平方
// 这里的方式决定高度单位与source/target的单位保持一致
float paraboloid(vec2 source, vec2 target, float ratio) { vec2 x = mix(source, target, ratio); // 获取该线段节点对应的直线位置
vec2 center = mix(source, target, 0.5);// 取中心点,充分利用glsl内建函数,提升性能 // 抛物线的公式应该是y * y = (source - center)^2 - (x - center)^2;
float dSourceCenter = distance(source, center);
float dXCenter = distance(x, center);
return (dSourceCenter + dXCenter) * (dSourceCenter - dXCenter);
} // 在屏幕空间中计算偏移值,最后在反算到裁切空间,也就是ndc空间
// offset_direction在position的y坐标中记录
// offset vector by strokeWidth pixels
// offset_direction is -1 (left) or 1 (right)
vec2 getExtrusionOffset(vec2 line_clipspace, float offset_direction) {
// normalized direction of the line
// ndc空间中的坐标乘以屏幕宽高像素,转换成2维屏幕像素;然后归一化成单位向量
vec2 dir_screenspace = normalize(line_clipspace * project_uViewportSize);
// rotate by 90 degrees
dir_screenspace = vec2(-dir_screenspace.y, dir_screenspace.x); // 求法线向量 // 法向量乘以偏移方向乘以宽度一半获取在屏幕空间中的偏移值
vec2 offset_screenspace = dir_screenspace * offset_direction * strokeWidth / 2.0;
// 将屏幕坐标反算到ndc空间
vec2 offset_clipspace = project_pixel_to_clipspace(offset_screenspace).xy; return offset_clipspace; // 返回ndc空间的偏移量
} float getSegmentRatio(float index) { // 返回线段索引在总线段数目中的比值,转换成0~1之间
return smoothstep(0.0, 1.0, index / (numSegments - 1.0));
} vec3 getPos(vec2 source, vec2 target, float segmentRatio) { // 获取线段节点在三维空间中的位置
float vertex_height = paraboloid(source, target, segmentRatio); // 获取高度信息 return vec3(
mix(source, target, segmentRatio), // 获取节点的x/y坐标
sqrt(max(0.0, vertex_height))// 获取节点的高度坐标
);
} void main(void) {
// 将insance中编码的起终点的经纬度分别转换成瓦片像素单位
vec2 source = project_position(instancePositions.xy);
vec2 target = project_position(instancePositions.zw); float segmentIndex = positions.x;// 节点的线段索引
float segmentRatio = getSegmentRatio(segmentIndex);
// if it's the first point, use next - current as direction
// otherwise use current - prev
// 这里处理方式比较巧妙,充分利用内建函数优势;
// step(edge, x) 作用如: x>=edge ? 1.0 : 0.0
// 所以上面英文注释所说,如果是起点就使用next-curr,其他的都是用curr - prev
//float indexDir = mix(-1.0, 1.0, step(segmentIndex, 0.0));
float indexDir = mix(-1.0, 1.0, (segmentIndex <= 0.0 ? 1.0 : 0.0));
// 根据indexDir获取下一段或者上一个线段节点的比值
float nextSegmentRatio = getSegmentRatio(segmentIndex + indexDir); // 获取两个节点的3维世界坐标并转化成ndc坐标
vec3 currPos = getPos(source, target, segmentRatio);
vec3 nextPos = getPos(source, target, nextSegmentRatio);
vec4 curr = project_to_clipspace(vec4(currPos, 1.0));
vec4 next = project_to_clipspace(vec4(nextPos, 1.0)); // extrude
// 进行线宽拉伸,获取法线方向的偏移
vec2 offset = getExtrusionOffset((next.xy - curr.xy) * indexDir, positions.y);
gl_Position = curr + vec4(offset, 0.0, 0.0); // 获取最终节点的ndc位置 // 根据线段节点位置计算颜色插值
vec4 color = mix(instanceSourceColors, instanceTargetColors, segmentRatio) / 255.;
vColor = vec4(color.rgb, color.a * opacity);// 获取最终颜色 // Set color to be rendered to picking fbo (also used to check for selection highlight).
picking_setPickingColor(instancePickingColors);
}