前言

通过spark获取hbase数据的过程中,遇到了InputFormat。文章主要围绕InputFormat介绍。会牵扯到spark,mapreduce,hbase相关内容

InputFormat

InputFormat是mapreduce提供的数据源格式接口,也就是说,通过该接口可以支持读取各种各样的数据源(文件系统,数据库等),从而进行mapreduce计算。

在有这个概念的基础上分析InputFormat的源码。

public abstract class InputFormat<K, V> {
/*
* 获取数据的分区信息,每个分区包装成InputSplit,返回一个List<InputSplit>
* 注意这里的分区是逻辑分区
* 比如一个文件,一共有100个字符,假如安装每个分区10个字符,那么一共有10个分区
*/
public abstract
List<InputSplit> getSplits(JobContext context
) throws IOException, InterruptedException; /*
* 根据分区信息,获取RecordReader,RecordReader其实就是一个加强版的迭代器,只不过返回的是kv格式的数据
* 可以看到,这里只有一个InputSplit,也就是只有一个分区,也就是说是分区内部的迭代
*/
public abstract
RecordReader<K,V> createRecordReader(InputSplit split,
TaskAttemptContext context
) throws IOException,
InterruptedException;
}

这样大概就理解了这个接口的定位,一个是how to defined partition,一个是how to get data from partition,下面再实例化到spark的应用场景。

TableInputFormat

Spark篇

通过spark的mapreduce接口取hbase数据一定会用到下面的代码

//hbaseConfig            HBaseConfiguration
//TableInputFormat InputFormat的子类 表示输入数据源
//ImmutableBytesWritable 数据源的key
//Result 数据源的value
//如果写过mapreduce任务,这个方法和mapreduce的启动配置类似,只不过输出都是rdd,所以就不用声明了
val hBaseRDD = sc.newAPIHadoopRDD(hbaseConfig, classOf[TableInputFormat],
classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
classOf[org.apache.hadoop.hbase.client.Result])

那这个是怎么个流程呢

首先,SparkContext会创建一个RDD

new NewHadoopRDD(this, fClass, kClass, vClass, jconf)

然后就over了…

这其实是spark的调度机制,只有遇到action操作的时候才会真正提交一个job,这里就不详述了。跳过这一段,直接看NewHadoopRDD中的方法,最关键的两个方法,compute()和getPartitions(),是和InputFormat的两个方法一一对应的。

·getPartitions()

override def getPartitions: Array[Partition] = {
//实例化InputFormat对象 也就是我们传入的TableInputFormat(可能是其它InputFormat,这里只是举个例子)
val inputFormat = inputFormatClass.newInstance
inputFormat match {
case configurable: Configurable =>
configurable.setConf(_conf)
case _ =>
}
val jobContext = new JobContextImpl(_conf, jobId)
//拿到所有split
val rawSplits = inputFormat.getSplits(jobContext).toArray
//拿到总分区数,并转换为spark的套路
val result = new Array[Partition](rawSplits.size)
for (i <- 0 until rawSplits.size) {
//把每个split封装成partition
result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable])
}
result
}

·compute()

由于代码太多会引起不适,贴一点关键代码

//一样的,实例化InputFormat对象
private val format = inputFormatClass.newInstance
format match {
case configurable: Configurable =>
configurable.setConf(conf)
case _ =>
}
//满足mapreduce的一切要求...
private val attemptId = new TaskAttemptID(jobTrackerId, id, TaskType.MAP, split.index, 0)
private val hadoopAttemptContext = new TaskAttemptContextImpl(conf, attemptId)
private var finished = false
private var reader =
try {
//拿到关键的RecordReader
val _reader = format.createRecordReader(
split.serializableHadoopSplit.value, hadoopAttemptContext)
_reader.initialize(split.serializableHadoopSplit.value, hadoopAttemptContext)
_reader
} catch {
case e: IOException if ignoreCorruptFiles =>
logWarning(
s"Skipped the rest content in the corrupted file: ${split.serializableHadoopSplit}",
e)
finished = true
null
} //喜闻乐见的hasNext和next
override def hasNext: Boolean = {
if (!finished && !havePair) {
try {
finished = !reader.nextKeyValue
} catch {
case e: IOException if ignoreCorruptFiles =>
logWarning(
s"Skipped the rest content in the corrupted file: ${split.serializableHadoopSplit}",
e)
finished = true
}
if (finished) {
// Close and release the reader here; close() will also be called when the task
// completes, but for tasks that read from many files, it helps to release the
// resources early.
close()
}
havePair = !finished
}
!finished
} override def next(): (K, V) = {
if (!hasNext) {
throw new java.util.NoSuchElementException("End of stream")
}
havePair = false
if (!finished) {
inputMetrics.incRecordsRead(1)
}
if (inputMetrics.recordsRead % SparkHadoopUtil.UPDATE_INPUT_METRICS_INTERVAL_RECORDS == 0) {
updateBytesRead()
}
(reader.getCurrentKey, reader.getCurrentValue)
}

省略了无数代码,大概就是把RecordReader封装成Iterator(这坑爹的mapreduce不能直接拿Iterator作接口吗)

Spark做的大概就是这样事情,剩下的是hbase做的

Hbase篇

TableInputFormat是hbase提供的接口,用来兼容mapreduce,没想到被spark这个浓眉大眼的截去了。

直奔主题找TableInputFormat的关键代码

·getSplits()

RegionSizeCalculator sizeCalculator =
new RegionSizeCalculator(getRegionLocator(), getAdmin());
TableName tableName = getTable().getName();
Pair<byte[][], byte[][]> keys = getStartEndKeys();
if (keys == null || keys.getFirst() == null ||
keys.getFirst().length == 0) {
HRegionLocation regLoc =
getRegionLocator().getRegionLocation(HConstants.EMPTY_BYTE_ARRAY, false);
if (null == regLoc) {
throw new IOException("Expecting at least one region.");
}
List<InputSplit> splits = new ArrayList<>(1);
//拿到region的数量,用来做为partitin的数量
long regionSize = sizeCalculator.getRegionSize(regLoc.getRegionInfo().getRegionName());
//创建TableSplit,也就是InputSplit
TableSplit split = new TableSplit(tableName, scan,
HConstants.EMPTY_BYTE_ARRAY, HConstants.EMPTY_BYTE_ARRAY, regLoc
.getHostnamePort().split(Addressing.HOSTNAME_PORT_SEPARATOR)[0], regionSize);
splits.add(split);

·createRecordReader()

final TableRecordReader trr =
this.tableRecordReader != null ? this.tableRecordReader : new TableRecordReader();
Scan sc = new Scan(this.scan);
sc.setStartRow(tSplit.getStartRow());
sc.setStopRow(tSplit.getEndRow());
trr.setScan(sc);
trr.setTable(getTable());
return new RecordReader<ImmutableBytesWritable, Result>() { @Override
public void close() throws IOException {
trr.close();
closeTable();
} @Override
public ImmutableBytesWritable getCurrentKey() throws IOException, InterruptedException {
return trr.getCurrentKey();
} @Override
public Result getCurrentValue() throws IOException, InterruptedException {
return trr.getCurrentValue();
} @Override
public float getProgress() throws IOException, InterruptedException {
return trr.getProgress();
} @Overrid
public void initialize(InputSplit inputsplit, TaskAttemptContext context) throws IOException,
InterruptedException {
trr.initialize(inputsplit, context);
} @Override
public boolean nextKeyValue() throws IOException, InterruptedException {
return trr.nextKeyValue();
}
};

这个应该挺清楚的,花式创建RecordReader..

总结

Spark为了兼容mapreduce,给出了类似hadoopRDD()的接口,hbase为了兼容mapreduce,给出了TableInputFormat之类的接口。从而使得spark可以通过hbase获取数据,当然方法不只这一种。

05-11 16:04
查看更多