1、Install [Anaconda](https://docs.continuum.io/anaconda/install#anaconda-install)
实际上安装了anaconda就已经安装好了jupyter,但是为了便于一些分析,我们配置一些环境。
2、配置环境
conda env create -f environment.yml
其中environment.yml中的内容如下:
name: vdl
dependencies:
- cycler=0.10.=py35_0
- decorator=4.0.=py35_0
- entrypoints=0.2.=py35_0
- freetype
- ipykernel=4.3.=py35_0
- ipython=5.0.=py35_0
- ipython_genutils=0.1.=py35_0
- jinja2=2.8=py35_1
- jsonschema=2.5.=py35_0
- jupyter=1.0.=py35_3
- jupyter_client=4.3.=py35_0
- jupyter_console=5.0.=py35_0
- jupyter_core=4.1.=py35_0
- libsodium
- markupsafe=0.23=py35_2
- matplotlib=1.5.=np111py35_0
- mistune
- mkl
- nbconvert=4.2.=py35_0
- nbformat=4.0.=py35_0
- notebook=4.2.=py35_0
- numpy=1.11.=py35_0
- openssl
- pandas=0.18.=np111py35_0
- path.py=8.2.=py35_0
- patsy=0.4.=py35_0
- pickleshare=0.7.=py35_0
- pip=8.1.=py35_0
- prompt_toolkit=1.0.=py35_0
- pygments=2.1.=py35_0
- pyparsing=2.1.=py35_0
- pyqt=4.11.=py35_4
- python=3.5.=
- python-dateutil=2.5.=py35_0
- pytz=2016.6.=py35_0
- pyzmq
- qt
- qtconsole=4.2.=py35_0
- requests=2.10.=py35_0
- scipy=0.17.=np111py35_1
- seaborn=0.7.=py35_0
- setuptools=23.0.=py35_0
- simplegeneric=0.8.=py35_1
- sip=4.18=py35_0
- six=1.10.=py35_0
- sqlite
- statsmodels=0.6.=np111py35_1
- tk
- tornado=4.3=py35_1
- traitlets=4.2.=py35_0
- wcwidth=0.1.=py35_0
- wheel=0.29.=py35_0
- zeromq
- zlib
- pip:
- colorlover==0.2.
- cufflinks==0.8.
- ipython-genutils==0.1.
- ipywidgets==5.2.
- jupyter-client==4.3.
- jupyter-console==5.0.
- jupyter-core==4.1.
- jupyterlab==0.1.
- plotly==1.12.
- prompt-toolkit==1.0.
- qgrid==0.3.
- tqdm==4.7.
- widgetsnbextension==1.2.
在执行这一步的时候,会报错,原因是因为ipy的源的问题。因此,需要修改pip的源。具体修改方法如下:
(1)在C:\Users\LJY目录下创建一个pip目录,如:C:\Users\xx\pip,并新建文件pip.ini的文件。
(2)在pip.ini文件中添加以下内容即可:(在这里我尝试了豆瓣的源https://pypi.doubanio.com/simple/和阿里的源都不行,只有清华大学的源可以用)
# Configuration file for jupyter-notebook. #------------------------------------------------------------------------------
# Configurable configuration
#------------------------------------------------------------------------------ #------------------------------------------------------------------------------
# LoggingConfigurable configuration
#------------------------------------------------------------------------------ # A parent class for Configurables that log.
#
# Subclasses have a log trait, and the default behavior is to get the logger
# from the currently running Application. #------------------------------------------------------------------------------
# SingletonConfigurable configuration
#------------------------------------------------------------------------------ # A configurable that only allows one instance.
#
# This class is for classes that should only have one instance of itself or
# *any* subclass. To create and retrieve such a class use the
# :meth:`SingletonConfigurable.instance` method. #------------------------------------------------------------------------------
# Application configuration
#------------------------------------------------------------------------------ # This is an application. # The date format used by logging formatters for %(asctime)s
# c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S' # The Logging format template
# c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s' # Set the log level by value or name.
# c.Application.log_level = #------------------------------------------------------------------------------
# JupyterApp configuration
#------------------------------------------------------------------------------ # Base class for Jupyter applications # Answer yes to any prompts.
c.JupyterApp.answer_yes = True # Full path of a config file.
# c.JupyterApp.config_file = '' # Specify a config file to load.
# c.JupyterApp.config_file_name = '' # Generate default config file.
# c.JupyterApp.generate_config = False #------------------------------------------------------------------------------
# NotebookApp configuration
#------------------------------------------------------------------------------ # Set the Access-Control-Allow-Credentials: true header
# c.NotebookApp.allow_credentials = False # Set the Access-Control-Allow-Origin header
#
# Use '*' to allow any origin to access your server.
#
# Takes precedence over allow_origin_pat.
# c.NotebookApp.allow_origin = '' # Use a regular expression for the Access-Control-Allow-Origin header
#
# Requests from an origin matching the expression will get replies with:
#
# Access-Control-Allow-Origin: origin
#
# where `origin` is the origin of the request.
#
# Ignored if allow_origin is set.
# c.NotebookApp.allow_origin_pat = '' # DEPRECATED use base_url
# c.NotebookApp.base_project_url = '/' # The base URL for the notebook server.
#
# Leading and trailing slashes can be omitted, and will automatically be added.
# c.NotebookApp.base_url = '/' # Specify what command to use to invoke a web browser when opening the notebook.
# If not specified, the default browser will be determined by the `webbrowser`
# standard library module, which allows setting of the BROWSER environment
# variable to override it.
# c.NotebookApp.browser = '' # The full path to an SSL/TLS certificate file.
# c.NotebookApp.certfile = '' # The full path to a certificate authority certifificate for SSL/TLS client
# authentication.
# c.NotebookApp.client_ca = '' # The config manager class to use
# c.NotebookApp.config_manager_class = 'notebook.services.config.manager.ConfigManager' # The notebook manager class to use.
# c.NotebookApp.contents_manager_class = 'notebook.services.contents.filemanager.FileContentsManager' # Extra keyword arguments to pass to `set_secure_cookie`. See tornado's
# set_secure_cookie docs for details.
# c.NotebookApp.cookie_options = {} # The random bytes used to secure cookies. By default this is a new random
# number every time you start the Notebook. Set it to a value in a config file
# to enable logins to persist across server sessions.
#
# Note: Cookie secrets should be kept private, do not share config files with
# cookie_secret stored in plaintext (you can read the value from a file).
# c.NotebookApp.cookie_secret = b'' # The file where the cookie secret is stored.
# c.NotebookApp.cookie_secret_file = '' # The default URL to redirect to from `/`
# c.NotebookApp.default_url = '/tree' # Whether to enable MathJax for typesetting math/TeX
#
# MathJax is the javascript library Jupyter uses to render math/LaTeX. It is
# very large, so you may want to disable it if you have a slow internet
# connection, or for offline use of the notebook.
#
# When disabled, equations etc. will appear as their untransformed TeX source.
# c.NotebookApp.enable_mathjax = True # extra paths to look for Javascript notebook extensions
# c.NotebookApp.extra_nbextensions_path = [] # Extra paths to search for serving static files.
#
# This allows adding javascript/css to be available from the notebook server
# machine, or overriding individual files in the IPython
# c.NotebookApp.extra_static_paths = [] # Extra paths to search for serving jinja templates.
#
# Can be used to override templates from notebook.templates.
# c.NotebookApp.extra_template_paths = [] #
# c.NotebookApp.file_to_run = '' # Use minified JS file or not, mainly use during dev to avoid JS recompilation
# c.NotebookApp.ignore_minified_js = False # (bytes/sec) Maximum rate at which messages can be sent on iopub before they
# are limited.
# c.NotebookApp.iopub_data_rate_limit = # (msg/sec) Maximum rate at which messages can be sent on iopub before they are
# limited.
# c.NotebookApp.iopub_msg_rate_limit = # The IP address the notebook server will listen on.
# c.NotebookApp.ip = 'localhost' # Supply extra arguments that will be passed to Jinja environment.
# c.NotebookApp.jinja_environment_options = {} # Extra variables to supply to jinja templates when rendering.
# c.NotebookApp.jinja_template_vars = {} # The kernel manager class to use.
# c.NotebookApp.kernel_manager_class = 'notebook.services.kernels.kernelmanager.MappingKernelManager' # The kernel spec manager class to use. Should be a subclass of
# `jupyter_client.kernelspec.KernelSpecManager`.
#
# The Api of KernelSpecManager is provisional and might change without warning
# between this version of Jupyter and the next stable one.
# c.NotebookApp.kernel_spec_manager_class = 'jupyter_client.kernelspec.KernelSpecManager' # The full path to a private key file for usage with SSL/TLS.
# c.NotebookApp.keyfile = '' # The login handler class to use.
# c.NotebookApp.login_handler_class = 'notebook.auth.login.LoginHandler' # The logout handler class to use.
# c.NotebookApp.logout_handler_class = 'notebook.auth.logout.LogoutHandler' # The url for MathJax.js.
# c.NotebookApp.mathjax_url = '' # Dict of Python modules to load as notebook server extensions.Entry values can
# be used to enable and disable the loading ofthe extensions.
# c.NotebookApp.nbserver_extensions = {} # The directory to use for notebooks and kernels.
c.NotebookApp.notebook_dir = 'sessions/' # Whether to open in a browser after starting. The specific browser used is
# platform dependent and determined by the python standard library `webbrowser`
# module, unless it is overridden using the --browser (NotebookApp.browser)
# configuration option.
# c.NotebookApp.open_browser = True # Hashed password to use for web authentication.
#
# To generate, type in a python/IPython shell:
#
# from notebook.auth import passwd; passwd()
#
# The string should be of the form type:salt:hashed-password.
# c.NotebookApp.password = '' # The port the notebook server will listen on.
# c.NotebookApp.port = # The number of additional ports to try if the specified port is not available.
# c.NotebookApp.port_retries = # (sec) Time window used to check the message and data rate limits.
# c.NotebookApp.rate_limit_window = 1.0 # Reraise exceptions encountered loading server extensions?
# c.NotebookApp.reraise_server_extension_failures = False # DEPRECATED use the nbserver_extensions dict instead
# c.NotebookApp.server_extensions = [] # The session manager class to use.
# c.NotebookApp.session_manager_class = 'notebook.services.sessions.sessionmanager.SessionManager' # Supply SSL options for the tornado HTTPServer. See the tornado docs for
# details.
# c.NotebookApp.ssl_options = {} # Supply overrides for the tornado.web.Application that the Jupyter notebook
# uses.
# c.NotebookApp.tornado_settings = {} # Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-
# For headerssent by the upstream reverse proxy. Necessary if the proxy handles
# SSL
# c.NotebookApp.trust_xheaders = False # DEPRECATED, use tornado_settings
# c.NotebookApp.webapp_settings = {} # The base URL for websockets, if it differs from the HTTP server (hint: it
# almost certainly doesn't).
#
# Should be in the form of an HTTP origin: ws[s]://hostname[:port]
# c.NotebookApp.websocket_url = '' #------------------------------------------------------------------------------
# ConnectionFileMixin configuration
#------------------------------------------------------------------------------ # Mixin for configurable classes that work with connection files # JSON file in which to store connection info [default: kernel-<pid>.json]
#
# This file will contain the IP, ports, and authentication key needed to connect
# clients to this kernel. By default, this file will be created in the security
# dir of the current profile, but can be specified by absolute path.
# c.ConnectionFileMixin.connection_file = '' # set the control (ROUTER) port [default: random]
# c.ConnectionFileMixin.control_port = # set the heartbeat port [default: random]
# c.ConnectionFileMixin.hb_port = # set the iopub (PUB) port [default: random]
# c.ConnectionFileMixin.iopub_port = # Set the kernel's IP address [default localhost]. If the IP address is
# something other than localhost, then Consoles on other machines will be able
# to connect to the Kernel, so be careful!
# c.ConnectionFileMixin.ip = '' # set the shell (ROUTER) port [default: random]
# c.ConnectionFileMixin.shell_port = # set the stdin (ROUTER) port [default: random]
# c.ConnectionFileMixin.stdin_port = #
# c.ConnectionFileMixin.transport = 'tcp' #------------------------------------------------------------------------------
# KernelManager configuration
#------------------------------------------------------------------------------ # Manages a single kernel in a subprocess on this host.
#
# This version starts kernels with Popen. # Should we autorestart the kernel if it dies.
# c.KernelManager.autorestart = True # DEPRECATED: Use kernel_name instead.
#
# The Popen Command to launch the kernel. Override this if you have a custom
# kernel. If kernel_cmd is specified in a configuration file, Jupyter does not
# pass any arguments to the kernel, because it cannot make any assumptions about
# the arguments that the kernel understands. In particular, this means that the
# kernel does not receive the option --debug if it given on the Jupyter command
# line.
# c.KernelManager.kernel_cmd = [] #------------------------------------------------------------------------------
# Session configuration
#------------------------------------------------------------------------------ # Object for handling serialization and sending of messages.
#
# The Session object handles building messages and sending them with ZMQ sockets
# or ZMQStream objects. Objects can communicate with each other over the
# network via Session objects, and only need to work with the dict-based IPython
# message spec. The Session will handle serialization/deserialization, security,
# and metadata.
#
# Sessions support configurable serialization via packer/unpacker traits, and
# signing with HMAC digests via the key/keyfile traits.
#
# Parameters ----------
#
# debug : bool
# whether to trigger extra debugging statements
# packer/unpacker : str : 'json', 'pickle' or import_string
# importstrings for methods to serialize message parts. If just
# 'json' or 'pickle', predefined JSON and pickle packers will be used.
# Otherwise, the entire importstring must be used.
#
# The functions must accept at least valid JSON input, and output *bytes*.
#
# For example, to use msgpack:
# packer = 'msgpack.packb', unpacker='msgpack.unpackb'
# pack/unpack : callables
# You can also set the pack/unpack callables for serialization directly.
# session : bytes
# the ID of this Session object. The default is to generate a new UUID.
# username : unicode
# username added to message headers. The default is to ask the OS.
# key : bytes
# The key used to initialize an HMAC signature. If unset, messages
# will not be signed or checked.
# keyfile : filepath
# The file containing a key. If this is set, `key` will be initialized
# to the contents of the file. # Threshold (in bytes) beyond which an object's buffer should be extracted to
# avoid pickling.
# c.Session.buffer_threshold = # Whether to check PID to protect against calls after fork.
#
# This check can be disabled if fork-safety is handled elsewhere.
# c.Session.check_pid = True # Threshold (in bytes) beyond which a buffer should be sent without copying.
# c.Session.copy_threshold = # Debug output in the Session
# c.Session.debug = False # The maximum number of digests to remember.
#
# The digest history will be culled when it exceeds this value.
# c.Session.digest_history_size = # The maximum number of items for a container to be introspected for custom
# serialization. Containers larger than this are pickled outright.
# c.Session.item_threshold = # execution key, for signing messages.
# c.Session.key = b'' # path to file containing execution key.
# c.Session.keyfile = '' # Metadata dictionary, which serves as the default top-level metadata dict for
# each message.
# c.Session.metadata = {} # The name of the packer for serializing messages. Should be one of 'json',
# 'pickle', or an import name for a custom callable serializer.
# c.Session.packer = 'json' # The UUID identifying this session.
# c.Session.session = '' # The digest scheme used to construct the message signatures. Must have the form
# 'hmac-HASH'.
# c.Session.signature_scheme = 'hmac-sha256' # The name of the unpacker for unserializing messages. Only used with custom
# functions for `packer`.
# c.Session.unpacker = 'json' # Username for the Session. Default is your system username.
# c.Session.username = 'io' #------------------------------------------------------------------------------
# MultiKernelManager configuration
#------------------------------------------------------------------------------ # A class for managing multiple kernels. # The name of the default kernel to start
# c.MultiKernelManager.default_kernel_name = 'python3' # The kernel manager class. This is configurable to allow subclassing of the
# KernelManager for customized behavior.
# c.MultiKernelManager.kernel_manager_class = 'jupyter_client.ioloop.IOLoopKernelManager' #------------------------------------------------------------------------------
# MappingKernelManager configuration
#------------------------------------------------------------------------------ # A KernelManager that handles notebook mapping and HTTP error handling #
# c.MappingKernelManager.root_dir = '' #------------------------------------------------------------------------------
# ContentsManager configuration
#------------------------------------------------------------------------------ # Base class for serving files and directories.
#
# This serves any text or binary file, as well as directories, with special
# handling for JSON notebook documents.
#
# Most APIs take a path argument, which is always an API-style unicode path, and
# always refers to a directory.
#
# - unicode, not url-escaped
# - '/'-separated
# - leading and trailing '/' will be stripped
# - if unspecified, path defaults to '',
# indicating the root path. #
# c.ContentsManager.checkpoints = None #
# c.ContentsManager.checkpoints_class = 'notebook.services.contents.checkpoints.Checkpoints' #
# c.ContentsManager.checkpoints_kwargs = {} # Glob patterns to hide in file and directory listings.
# c.ContentsManager.hide_globs = ['__pycache__', '*.pyc', '*.pyo', '.DS_Store', '*.so', '*.dylib', '*~'] # Python callable or importstring thereof
#
# To be called on a contents model prior to save.
#
# This can be used to process the structure, such as removing notebook outputs
# or other side effects that should not be saved.
#
# It will be called as (all arguments passed by keyword)::
#
# hook(path=path, model=model, contents_manager=self)
#
# - model: the model to be saved. Includes file contents.
# Modifying this dict will affect the file that is stored.
# - path: the API path of the save destination
# - contents_manager: this ContentsManager instance
# c.ContentsManager.pre_save_hook = None # The base name used when creating untitled directories.
# c.ContentsManager.untitled_directory = 'Untitled Folder' # The base name used when creating untitled files.
# c.ContentsManager.untitled_file = 'untitled' # The base name used when creating untitled notebooks.
# c.ContentsManager.untitled_notebook = 'Untitled' #------------------------------------------------------------------------------
# FileManagerMixin configuration
#------------------------------------------------------------------------------ # Mixin for ContentsAPI classes that interact with the filesystem.
#
# Provides facilities for reading, writing, and copying both notebooks and
# generic files.
#
# Shared by FileContentsManager and FileCheckpoints.
#
# Note ---- Classes using this mixin must provide the following attributes:
#
# root_dir : unicode
# A directory against against which API-style paths are to be resolved.
#
# log : logging.Logger # By default notebooks are saved on disk on a temporary file and then if
# succefully written, it replaces the old ones. This procedure, namely
# 'atomic_writing', causes some bugs on file system whitout operation order
# enforcement (like some networked fs). If set to False, the new notebook is
# written directly on the old one which could fail (eg: full filesystem or quota
# )
# c.FileManagerMixin.use_atomic_writing = True #------------------------------------------------------------------------------
# FileContentsManager configuration
#------------------------------------------------------------------------------ # Python callable or importstring thereof
#
# to be called on the path of a file just saved.
#
# This can be used to process the file on disk, such as converting the notebook
# to a script or HTML via nbconvert.
#
# It will be called as (all arguments passed by keyword)::
#
# hook(os_path=os_path, model=model, contents_manager=instance)
#
# - path: the filesystem path to the file just written - model: the model
# representing the file - contents_manager: this ContentsManager instance
# c.FileContentsManager.post_save_hook = None #
# c.FileContentsManager.root_dir = '' # DEPRECATED, use post_save_hook. Will be removed in Notebook 5.0
# c.FileContentsManager.save_script = False #------------------------------------------------------------------------------
# NotebookNotary configuration
#------------------------------------------------------------------------------ # A class for computing and verifying notebook signatures. # The hashing algorithm used to sign notebooks.
# c.NotebookNotary.algorithm = 'sha256' # The number of notebook signatures to cache. When the number of signatures
# exceeds this value, the oldest % of signatures will be culled.
# c.NotebookNotary.cache_size = # The sqlite file in which to store notebook signatures. By default, this will
# be in your Jupyter runtime directory. You can set it to ':memory:' to disable
# sqlite writing to the filesystem.
# c.NotebookNotary.db_file = '' # The secret key with which notebooks are signed.
# c.NotebookNotary.secret = b'' # The file where the secret key is stored.
# c.NotebookNotary.secret_file = '' #------------------------------------------------------------------------------
# KernelSpecManager configuration
#------------------------------------------------------------------------------ # If there is no Python kernelspec registered and the IPython kernel is
# available, ensure it is added to the spec list.
# c.KernelSpecManager.ensure_native_kernel = True # The kernel spec class. This is configurable to allow subclassing of the
# KernelSpecManager for customized behavior.
# c.KernelSpecManager.kernel_spec_class = 'jupyter_client.kernelspec.KernelSpec' # Whitelist of allowed kernel names.
#
# By default, all installed kernels are allowed.
# c.KernelSpecManager.whitelist = set()
6、在我们的代码中,有时候想执行grid函数时,会出现错误:“Widget Javascript not detected. It may not be installed properly. ”
出现这个原因应该是没有安装ipywidgets。于是就安装:conda install -c conda-forge ipywidgets
安装成功后,执行:jupyter nbextension enable --py widgetsnbextension 后如下所示:
此时,等待一会,在执行grid函数时就不会报错额。
7、jupyter的使用方法
(1)选择一个目录dir:jupyter notebook
(2)当前生成的所有文件都会被保存在dir中。并且默认该目录为jupyter的根目录
(3)如果有什么数据文件,或者自定义安装包都可以直接拷贝到该目录即可。
接下来就是可以愉快地玩了。