Subsequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5716 Accepted Submission(s): 1884
Problem Description
There is a sequence of integers. Your task is to find the longest subsequence that satisfies the following condition: the difference between the maximum element and the minimum element of the subsequence is no smaller than m and no larger than k.
Input
There are multiple test cases. For each test case, the first line has three integers, n, m and k. n is the length of the sequence and is in the range [1, 100000]. m and k are in the range [0, 1000000]. The second line has n integers, which are all in the range [0, 1000000]. Proceed to the end of file.
Output
For each test case, print the length of the subsequence on a single line.
Sample Input
5 0 0
1 1 1 1 1
5 0 3
1 2 3 4 5
1 1 1 1 1
5 0 3
1 2 3 4 5
Sample Output
5
4
4
题解:
一个序列的最大值与最小值的差在m和k之间;
单调队列。
维护最大值和最小值,如果发现最大值和最小值的差大于k,那么就移动下标最靠前的队列。
注意如下数据:
5 2 4
2 1 5 2 2
应该用一个last标记上一个移动的位置,然后答案就是max{i-last},之前没有这个标记wa了一次。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
using namespace std;
const int MAXN = ;
int num[MAXN];
int q1[MAXN], q2[MAXN];
int main(){
int n, m, k;
while(~scanf("%d%d%d", &n, &m, &k)){
for(int i = ; i < n; i++)
scanf("%d", num + i);
int h1 = , t1 = -, h2 = , t2 = -;
int ans = ;
int last = -;
for(int i = ; i < n; i++){
while(h1 <= t1 && num[q1[t1]] > num[i])
t1--;
while(h2 <= t2 && num[q2[t2]] < num[i])
t2--;
q1[++t1] = i;
q2[++t2] = i;
while(h1 <= t1 && h2 <= t2 && num[q2[h2]] - num[q1[h1]] > k){
if(q1[h1] < q2[h2])
last = q1[h1++];
else
last = q2[h2++];
}
if(h1 <= t1 && h2 <= t2 && num[q2[h2]] - num[q1[h1]] >= m){
ans = max(ans, i - last);
}
}
printf("%d\n", ans);
}
return ;
}