Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order. But what if Swap(0, *)
is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (≤105) followed by a permutation sequence of {0, 1, ..., N−1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10
3 5 7 2 6 4 9 0 8 1
Sample Output:
注意点:1.a!=0别忘
2.k必须放在外面,否则超时!
#include<bits/stdc++.h>
using namespace std; const int maxn = 100010; int n; int pos[maxn]; int main(){ cin>>n; int a; int left=n-1,ans=0; for(int i=0;i<n;i++){
cin>>a;
pos[a]=i; if(pos[a]==a&&a!=0)//a!=0别忘
left--;
} int k=1; //k必须放在外面,否则超时 while(left>0){
if(pos[0]==0){ while(k<n){
if(pos[k]!=k){
swap(pos[0],pos[k]);
ans++;
break;
} k++;
} }else{
swap(pos[0],pos[pos[0]]);
left--;
ans++;
} } cout<<ans<<endl; }