Hdu 4661  树上拓扑序计数-LMLPHP

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = ;
const int MAXM = ;
const int mod = 1e9 + ;
int to[MAXM << ], nxt[MAXM << ], Head[MAXN], ed = ;
inline void addedge(int u, int v) {
to[++ed] = v;
nxt[ed] = Head[u];
Head[u] = ed;
}
int T, n;
ll dp[MAXN], sz[MAXN];
ll fac[MAXN], inv[MAXN];
ll anser = ;
ll Qpow(ll a, ll b) {
ll ans = , base = a;
while (b != ) {
if (b & != ) {
ans *= base;
ans %= mod;
}
base *= base;
base %= mod;
b >>= 1LL;
}
return ans;
}
void init() {
fac[] = ;
for (ll i = ; i <= ; i++) {
fac[i] = fac[i - ] * i % mod;
}
for (int i = ; i <= ; i++) {
inv[i] = Qpow(fac[i], mod - );
}
}
void getsz(int x, int fa) {
sz[x] = ;
for (int v, i = Head[x]; i; i = nxt[i]) {
v = to[i];
if (v == fa) {
continue;
}
getsz(v, x);
sz[x] += sz[v];
}
return ;
}
void dp1(int x, int fa) {
dp[x] = ;
for (int v, i = Head[x]; i; i = nxt[i]) {
v = to[i];
if (v == fa) {
continue;
}
dp1(v, x);
dp[x] = ((dp[x] * dp[v]) % mod * inv[sz[v]]) % mod;
}
dp[x] = dp[x] * fac[sz[x] - ] % mod;
return ;
}
void dp2(int x, int fa) {
if (x != ) {
//dp[x] = dp[fa] * sz[x] % mod * inv[n - sz[x]] % mod;
dp[x] = dp[fa] * sz[x] % mod * Qpow(n - sz[x], mod - ) % mod;
anser = (anser + dp[x] * dp[x] % mod) % mod;
}
for (int v, i = Head[x]; i; i = nxt[i]) {
v = to[i];
if (v == fa) {
continue;
}
dp2(v, x);
}
return ;
}
int main() {
init();
int u, v;
scanf("%d", &T);
while (T--) {
anser = ;
scanf("%d", &n);
ed = ;
for (int i = ; i <= n; i++) {
Head[i] = ;
}
for (int i = ; i < n; i++) {
scanf("%d %d", &u, &v);
addedge(u, v), addedge(v, u);
}
getsz(, );
dp1(, );
anser = dp[] * dp[] % mod;
dp2(, );
anser += mod;
anser %= mod;
cout << anser << endl;
}
return ;
}
05-27 00:12
查看更多