本文介绍了基于WinBugs / JAGS中的if - else条件选择不同的分布的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试编写一个Winbugs / Jags模型来建模多粒度主题模型(正是本文 - > )

I am trying to write a Winbugs/Jags model for modeling multi grain topic models (exactly this paper -> http://www.ryanmcd.com/papers/mg_lda.pdf)

这里我想根据特定值选择不同的发行版。
例如:我想做类似的事情

Here I would like to choose a different distribution based on a particular value.For Eg: I would like to do something like

`if ( X[i] > 0.5 )
{
Z[i] ~ dcat(theta-gl[D[i], 1:K-gl])
W[i] ~ dcat(phi-gl[z[i], 1:V])
}
else
{
Z[i] ~ dcat(theta-loc[D[i], 1:K-loc])
W[i] ~ dcat(phi-loc[z[i], 1:V])
}
`

这可以在Winbugs / JAGS中完成吗?

Is this possible to be done in Winbugs/JAGS?

推荐答案

Winbugs / JAGS不是一种过程语言,所以你不能使用这样的结构。使用步骤功能。从手册中引用:

Winbugs/JAGS is not a procedural language, so you cannot use the construct like that. Use step function. Quote from the manual:

所以你需要一个技巧来改变条件:

So you need a trick to change the condition:

X[i] > 0.5   <=>
X[i] - 0.5 > 0  <=>
!(X[i] - 0.5 <= 0) <=>
!(-(X[i] - 0.5) >= 0) <=>
!(step(-(X[i] - 0.5)) == 1) <=>
step(-(X[i] - 0.5)) == 0

然后用它来索引技巧:

# then branch
Z_branch[i, 1] ~ dcat(theta-gl[D[i], 1:K-gl])
W_branch[i, 1] ~ dcat(phi-gl[z[i], 1:V])

# else branch
Z_branch[i, 2] ~ dcat(theta-loc[D[i], 1:K-loc])
W_branch[i, 2] ~ dcat(phi-loc[z[i], 1:V])

# decision here
if_branch[i] <- 1 + step(-(X[i] - 0.5)) # 1 for "then" branch, 2 for "else" branch
Z[i] ~ Z_branch[i, if_branch[i]]
W[i] ~ W_branch[i, if_branch[i]]

这篇关于基于WinBugs / JAGS中的if - else条件选择不同的分布的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-05 23:51