问题描述
虽然我认为这是一个基本问题,但我似乎无法找到如何在 R 中计算:
Although I think this is a basic question, I can't seem to find out how to calculate this in R:
2 个或多个正态分布(拟合在直方图上)的交点(我需要 x 值),例如具有以下参数:
the point of intersection (I need the x-value) of 2 or more normal distributions (fitted on a histogram) which have for example the following parameters:
d=data.frame(mod=c(1,2),mean=c(14,16),sd=c(0.9,0.6),prop=c(0.6,0.4))
用我的 2 条曲线的均值和标准差,并支撑每个 mod 对分布的贡献比例.
With the mean and standard deviation of my 2 curves, and prop the proportions of contribution of each mod to the distribution.
推荐答案
你可以使用uniroot
:
f <- function(x) dnorm(x, m=14, sd=0.9) * .6 - dnorm(x, m=16, sd=0.6) * .4
uniroot(f, interval=c(12, 16))
$root
[1] 15.19999
$f.root
[1] 2.557858e-06
$iter
[1] 5
$estim.prec
[1] 6.103516e-05
ETA 一些说明:
ETA some exposition:
uniroot
是一个单变量根查找器,即给定一个变量 x
的函数 f
,它找到 x 的值
求解方程 f(x) = 0
.
uniroot
is a univariate root finder, ie given a function f
of one variable x
, it finds the value of x
that solves the equation f(x) = 0
.
要使用它,您需要提供函数 f
,以及假定解值所在的区间.在这种情况下,f
只是两个密度的差值;它们相交的点将是 f
为零的地方.在这个例子中,我通过绘制一个图并看到它们在 x=15 附近相交,得到了区间 (12, 16).
To use it, you supply the function f
, along with an interval within which the solution value is assumed to lie. In this case, f
is just the difference between the two densities; the point where they intersect will be where f
is zero. I got the interval (12, 16) in this example by making a plot and seeing that they intersected around x=15.
这篇关于交点 2 条正态曲线的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!