问题描述
我正在尝试根据多列中的值删除数据集中的特定行.仅当满足所有 3 列中的条件时才应删除行.
I am trying to delete specific rows in my dataset based on values in multiple columns. A row should be deleted only when a condition in all 3 columns is met.
这是我的代码:
test_dff %>%
filter(contbr_nm != c('GAITHER, BARBARA', 'PANIC, RADIVOJE', 'KHAN, RAMYA') &
contbr_city != c('APO AE', 'PORSGRUNN', 'NEW YORK') &
contbr_zip != c('9309', '3924', '2586'))
此代码应删除表中的 12 行.相反,它删除了绝大多数.我怀疑,只要满足其中一个条件,它就会删除所有可能的行.
This code should remove 12 rows in my table. Instead it removes a vast majority of them. I am suspecting, that it removes all the possible rows, whenever one of the conditions is met.
是否有更好的解决方案,或者我是否必须使用该方法,如此处所述?
Is there a better solution, or do I have to use the approach, described here?
我需要分别指定每个组合吗?像这样?这种方式也删除了太多的行,所以也是错误的.
Do I need to specify each combination separately? Like so? This approach also deletes far too many rows, so it is also wrong.
test_dff %>%
filter((contbr_nm != 'GAITHER, BARBARA' & contbr_city != 'APO AE' & contbr_zip != '9309') &
(contbr_nm != 'PANIC, RADIVOJE' & contbr_city != 'PORSGRUNN' & contbr_zip != '3924') &
(contbr_nm != 'KHAN, RAMYA' & contbr_city != 'NEW YORK' & contbr_zip != '2586') )
如果我只专注于删除基于一个变量的行,这段代码就有效:
If I focus on deleting rows only based on one variable, this piece of code works:
test_dff %>%
filter(contbr_zip != c('9309')) %>%
filter(contbr_zip != c('3924')) %>%
filter(contbr_zip != c('2586'))
为什么这种方法行不通?
Why does such an approach not work?
test_dff %>%
filter(contbr_zip != c('9309','3924','2586'))
非常感谢您的帮助.
推荐答案
这是一种基于连接的方法 - 所有项目必须完全匹配.
Here is a join-based approach - all items must be exact matches.
main <- read.csv(text = "
id,name,city,zip
1,mary,new york,10017
2,jonah,new york,10016
3,tamil,manhattan,10019
4,vijay,harlem,10028
")
excludes <- read.csv(text = "
name,city,zip
jonah,new york,10016
vijay,harlem,10028
")
library(dplyr)
anti_join(main, excludes)
# id name city zip
# 1 3 tamil manhattan 10019
# 2 1 mary new york 10017
这篇关于使用 dplyr 根据多个条件删除行的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!