本文介绍了用删减表创建一个ggplot2生存曲线的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! $ (肺,{b1,b2,b3,b3,b3,b3,b3,b3,b3)的数据(肺,包=存活)b $ b sex }) ggthemes_data require( (数据帧(x =肺$时间,y =肺$状态,z =肺$性)) .df .fit< - survival :: survfit(survival :: Surv(time = x,event = y,type =right)〜z, .df) .pval 函数(x){ data.frame(x = 0,y = 0,df = 1, chisq = survival :: survdiff( survival :: Surv(time = x,event = y,type =right)〜z,x )$ chisq )}) .pval $ label< - paste0(paste(italic(p),\=, signif(1 - pchisq(.p) val $ chisq,.pval $ df),3),\)) .fit< - data.frame(x = .fit $ time,y = .fit $ surv,nrisk = .fit $ n.risk,nevent = .fit $ n.event,ncensor = .fit $ n.censor,upper = .fit $ upper,lower = .fit $ lower) $ b $ .df .df< - .fit< - data.frame (.fit,.df [,c(z),drop = FALSE]) .med data.frame( median = min(subset(x,y< (0.5 + .Machine $ double.eps ^ 0.5))$ x))}) .df< - .fit< - rbind(unique(data.frame(x = 0,y = 1,nrisk = NA,nevent = NA, ncensor = NA,upper = 1,lower = 1,.df [,c(z),drop = FALSE])),.fit) .cens< - subset(.fit,ncensor == 1) .tmp1< - data.frame(as.table(by(.df,.df [,c(z), (d) max(d $ nrisk,na.rm = TRUE)))) .tmp1 $ x .nrisk {.df data.frame(as.table(by(.df,.df [,c(z),drop = FALSE),函数(d)if (all is.na(d $ nrisk)))NA else min(d $ nrisk - d $ nevent - d $ ncensor,na.rm = TRUE)))); .tmp2 $ x< - 100 * i; .tmp2 $ Freq [is.na(.tmp2 $ Freq)] .tmp1< - .tmp2; .nrisk .nrisk $ y .plot RcmdrPlugin.KMggplot2 :: geom_stepribbon(data = .fit,aes(x = x,ymin = lower,ymax = upper,fill = z),alpha = 0.25,color =transparent,show.legend = FALSE,kmplot = TRUE)+ geom_step(size = 1.5)+ geom_linerange(data = .cens,aes(x = x,ymin = y, ymax = y + 0.02),size = 1.5)+ geom_text(data = .pval,aes(y = y,x = x, label = label),color =black,hjust = 0,vjust = -0.5,parse = TRUE,show.legend = FALSE,size = 14 * 0.282,family =sans) + geom_vline(data = .med,aes(xintercept = median),color =black,lty = 2)+ scale_x_continuous(breaks = seq(0,900,by = 100),limits = c(0,900))+ scale_y_continuous(limits = c(0,1),expand = c(0.01,0))+ scale_colour_brewer(palette =Set1)+ scale_f ill_brewer(palette =Set1)+ xlab(从入门开始的时间)+ ylab(生存比例)+ labs(color =sex)+ ggthemes :: theme_calc(base_size = 1,base_family =sans)+主题(legend.position = c(1,1),legend.justification = c(1,1)) .nrisk $ y .plot2 geom_text(size = 14 * 0.282,family =sans)+ scale_x_continuous(breaks = seq(0,900,by = 100),limits = c(0,900 )+ scale_y_continuous(limits = c(0,1))+ scale_colour_brewer(palette =Set1)+ ylab(生存比例)+ RcmdrPlugin.KMggplot2 :: theme_natrisk(ggthemes :: theme_calc,14,sans).plot3 geom_text(hjust = 0,size = 14 * 0.282,family =sans)+ scale_x_continuous(limits = c(-5,5 ))+ scale_y_continuous(limits = c(0,1))+ scale_colour_brewer(palette =Set1)+ RcmdrPlugin.KMggplot2 :: theme_natrisk21(ggthemes :: theme_calc,14,sans) .plotb RcmdrPlugin.KMggplot2 :: theme_natriskbg(ggthemes :: theme_calc,14,sans ) grid :: grid.newpage(); grid :: pushViewport(grid :: viewport(layout = grid :: grid.layout(2,2,heights = unit(c(1,3),c(null,lines)), widths = unit(c(4,1),c(lines,null))))); print(.plotb,vp = grid :: viewport(layout.pos.row = 1:2,layout.pos.col = 1:2)); print(.plot,vp = grid :: viewport(layout.pos.row = 1,layout.pos.col = 1:2)); print(.plot2,vp = grid :: viewport(layout.pos.row = 2,layout.pos.col = 1:2)); print(.plot3,vp = grid :: viewport(layout.pos.row = 2,layout.pos.col = 1)); .plot< - recordPlot() print(.plot) I am trying to create a Kaplan-Meier plot with 95% confidence bands plus having the censored data in a table beneath it. I can create the plot, but not the table. I get the error message: Error in grid.draw(both) : object 'both' not found. library(survival) library(ggplot2) library(GGally) library(gtable) data(lung) sf.sex <- survfit(Surv(time, status) ~ sex, data = lung) pl.sex <- ggsurv(sf.sex) + geom_ribbon(aes(ymin=low,ymax=up,fill=group),alpha=0.3) + guides(fill=guide_legend("sex")) pl.sex tbl <- ggplot(df_nums, aes(x = Time, y = factor(variable), colour = variable,+label=value)) + geom_text() + theme_bw() + theme(panel.grid.major = element_blank(),+ legend.position = "none",+ plot.background = element_blank(), + panel.grid.major = element_blank(),+ panel.grid.minor = element_blank(),+ panel.border = element_blank(),+ legend.position="none",+ axis.line = element_blank(),+ axis.text.x = element_blank(),+ axis.text.y = element_text(size=15, face="bold", color = 'black'),+ axis.ticks=element_blank(),+ axis.title.x = element_blank(),+ axis.title.y = element_blank(),+ plot.title = element_blank()) + scale_y_discrete(breaks=c("Group.A", "Group.B"), labels=c("Group A", "Group B")) both = rbind(ggplotGrob(g), ggplotGrob(tbl), size="last") panels <- both$layout$t[grep("panel", both$layout$name)] both$heights[panels] <- list(unit(1,"null"), unit(2, "lines")) both <- gtable_add_rows(both, heights = unit(1,"line"), 8) both <- gtable_add_grob(both, textGrob("Number at risk", hjust=0, x=0), t=9, l=2, r=4) grid.newpage() grid.draw(both) 解决方案 I solved the problem by using the Rcmdrplugin KMggplot2 The code is generated by the plugin after selecting the data and variables. library(survival, pos=18) data(lung, package="survival") lung <- within(lung, { sex <- factor(sex, labels=c('male','female')) }) ggthemes_data <- ggthemes::ggthemes_data require("ggplot2") .df <- na.omit(data.frame(x = lung$time, y = lung$status, z = lung$sex)) .df <- .df[do.call(order, .df[, c("z", "x"), drop = FALSE]), , drop = FALSE] .fit <- survival::survfit(survival::Surv(time = x, event = y, type = "right") ~ z, .df) .pval <- plyr::ddply(.df, plyr::.(), function(x) { data.frame( x = 0, y = 0, df = 1, chisq = survival::survdiff( survival::Surv(time = x, event = y, type = "right") ~ z, x )$chisq )}) .pval$label <- paste0( "paste(italic(p), \" = ", signif(1 - pchisq(.pval$chisq, .pval$df), 3), "\")" ) .fit <- data.frame(x = .fit$time, y = .fit$surv, nrisk = .fit$n.risk, nevent = .fit$n.event, ncensor= .fit$n.censor, upper = .fit$upper, lower = .fit$lower) .df <- .df[!duplicated(.df[,c("x", "z")]), ] .df <- .fit <- data.frame(.fit, .df[, c("z"), drop = FALSE]) .med <- plyr::ddply(.fit, plyr::.(z), function(x) { data.frame( median = min(subset(x, y < (0.5 + .Machine$double.eps^0.5))$x) )}) .df <- .fit <- rbind(unique(data.frame(x = 0, y = 1, nrisk = NA, nevent = NA, ncensor = NA, upper = 1, lower = 1, .df[, c("z"), drop = FALSE])), .fit).cens <- subset(.fit, ncensor == 1).tmp1 <- data.frame(as.table(by(.df, .df[, c("z"), drop = FALSE], function(d) max(d$nrisk, na.rm = TRUE)))) .tmp1$x <- 0 .nrisk <- .tmp1 for (i in 1:9) {.df <- subset(.fit, x < 100 * i); .tmp2 <- data.frame(as.table(by(.df, .df[, c("z"), drop = FALSE], function(d) if (all(is.na(d$nrisk))) NA else min(d$nrisk - d$nevent - d$ncensor, na.rm = TRUE)))); .tmp2$x <- 100 * i; .tmp2$Freq[is.na(.tmp2$Freq)] <- .tmp1$Freq[is.na(.tmp2$Freq)]; .tmp1 <- .tmp2; .nrisk <- rbind(.nrisk, .tmp2)} .nrisk$y <- rep(seq(0.075, 0.025, -0.05), 10) .plot <- ggplot(data = .fit, aes(x = x, y = y, colour = z)) + RcmdrPlugin.KMggplot2::geom_stepribbon(data = .fit, aes(x = x, ymin = lower, ymax = upper, fill = z), alpha = 0.25, colour = "transparent", show.legend = FALSE, kmplot = TRUE) + geom_step(size = 1.5) +geom_linerange(data = .cens, aes(x = x, ymin = y, ymax = y + 0.02), size = 1.5) +geom_text(data = .pval, aes(y = y, x = x, label = label), colour = "black", hjust = 0, vjust = -0.5, parse = TRUE, show.legend = FALSE, size = 14 * 0.282, family = "sans") + geom_vline(data = .med, aes(xintercept = median), colour = "black", lty = 2) + scale_x_continuous(breaks = seq(0, 900, by = 100), limits = c(0, 900)) + scale_y_continuous(limits = c(0, 1), expand = c(0.01,0)) + scale_colour_brewer(palette = "Set1") + scale_fill_brewer(palette = "Set1") + xlab("Time from entry") + ylab("Proportion of survival") + labs(colour = "sex") + ggthemes::theme_calc(base_size = 14, base_family = "sans") + theme(legend.position = c(1, 1), legend.justification = c(1, 1)) .nrisk$y <- ((.nrisk$y - 0.025) / (max(.nrisk$y) - 0.025) + 0.5) * 0.5 .plot2 <- ggplot(data = .nrisk, aes(x = x, y = y, label = Freq, colour = z)) + geom_text(size = 14 * 0.282, family = "sans") + scale_x_continuous(breaks = seq(0,900, by = 100), limits = c(0, 900)) + scale_y_continuous(limits = c(0, 1)) + scale_colour_brewer(palette = "Set1") + ylab("Proportion of survival") + RcmdrPlugin.KMggplot2::theme_natrisk(ggthemes::theme_calc, 14, "sans") .plot3 <- ggplot(data = subset(.nrisk, x == 0), aes(x = x, y = y, label = z, colour = z)) + geom_text(hjust = 0, size = 14 * 0.282, family = "sans") + scale_x_continuous(limits = c(-5, 5)) + scale_y_continuous(limits = c(0, 1)) + scale_colour_brewer(palette = "Set1") + RcmdrPlugin.KMggplot2::theme_natrisk21(ggthemes::theme_calc, 14, "sans") .plotb <- ggplot(.df, aes(x = x, y = y)) + geom_blank() + RcmdrPlugin.KMggplot2::theme_natriskbg(ggthemes::theme_calc, 14, "sans") grid::grid.newpage(); grid::pushViewport(grid::viewport(layout = grid::grid.layout(2, 2, heights = unit(c(1, 3), c("null", "lines")), widths = unit(c(4, 1), c("lines", "null"))))); print(.plotb, vp = grid::viewport(layout.pos.row = 1:2, layout.pos.col = 1:2)); print(.plot , vp = grid::viewport(layout.pos.row = 1 , layout.pos.col = 1:2)); print(.plot2, vp = grid::viewport(layout.pos.row = 2 , layout.pos.col = 1:2)); print(.plot3, vp = grid::viewport(layout.pos.row = 2 , layout.pos.col = 1 )); .plot <- recordPlot() print(.plot) 这篇关于用删减表创建一个ggplot2生存曲线的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云!
09-05 20:41