问题描述
我有以下Python数据框:
I have the following Python dataframe:
Type Actual Predicted
A 4 3
A 10 18
A 13 11
B 3 10
B 4 2
B 8 33
C 20 17
C 40 33
C 87 80
C 32 30
我有计算R ^ 2和RMSE的代码,但我不知道如何通过不同的类型"来计算它.
I have the code to calculate R^2 and RMSE but I don't know how to calculate it by distinct "Type".
就目前而言,我的方法是将较大的表分为仅由A,B,C值组成的三个较小的表,然后根据每个较小的表计算R ^ 2和RMSE,然后将它们重新附加在一起.
For now, my methodology is breaking the larger table into three smaller tables consisting of only A, B, C values and then calculating R^2 and RMSE off each smaller table...then appending them back together.
但是上述方法效率低下,我相信应该有一个更简单的方法吗?
But the above method is inefficient and I believe there should be an easier way?
以下是我希望对结果进行分组时产生的格式:
Below is the format I want the results to produce when things are grouped:
Type R^2 RMSE
A value value
B value value
C value value
推荐答案
这是groupby
方法:
import numpy as np
import pandas as pd
from sklearn.metrics import r2_score, mean_squared_error
def r2_rmse( g ):
r2 = r2_score( g['Actual'], g['Predicted'] )
rmse = np.sqrt( mean_squared_error( g['Actual'], g['Predicted'] ) )
return pd.Series( dict( r2 = r2, rmse = rmse ) )
your_df.groupby( 'Type' ).apply( r2_rmse ).reset_index()
这篇关于Python数据框:使用Groupby在一列上计算R ^ 2和RMSE的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!