csv阅读器中的日期转换

csv阅读器中的日期转换

本文介绍了在pandas csv阅读器中的日期转换的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

 来自StringIO import StringIO 
import datetime as dt
import pandas as pd

def addtime(temp):
temp =(temp)+(dt.timedelta(hours = 16))
return(temp)

data =\
'12 -31-2012' ,5100,5200
'01 / 1/2013',5300,5400

tdata = pd.read_csv(StringIO(data),
names = ','field1','field'],index_col = None,
parse_dates = ['date'],header = None)

print tdata

old_date = tdata.ix [0,'date']
print'old date =',old_date
new_date = addtime(old_date)
print'new date =',new_date

#date field1 field
#0 2012-12-31 00:00:00 5100 5200
#1 2013-01-01 00:00:00 5300 5400
#old date = 2012-12-31 00:00:00
#new date = 2012-12-31 16:00:00

我想在每个日期添加16小时作为Pandas CSV阅读器的一部分。但我不知道如何添加一个parse_dates =的工作原理。示例代码执行正确的操作,只是不是以所需的方式。帮助将不胜感激。

解决方案

使用 date_parser 参数。通常,默认为 dateutil.parser.parse ,但您可以指定一个自定义函数(如 addtime ),它不仅解析日期字符串,而且还添加 timedelta

 从StringIO import StringIO 
导入datetime为dt
导入pandas为pd
导入dateutil.parser作为解析器

def addtime(temp):
temp = parser.parse(temp)+ dt.timedelta(hours = 16)
return temp

data =\
'12 -31-2012' ,5100,5200
'01 / 1/2013',5300,5400

tdata = pd.read_csv(StringIO(data),
names = ','field1','field'],index_col = None,
parse_dates = ['date'],header = None,date_parser = addtime)

print tdata



产生

  field1字段
0 2012-12-31 16:00:00 5100 5200
1 2013-01-01 16:00:00 5300 5400


from StringIO import StringIO
import datetime as dt
import pandas as pd

def addtime(temp):
    temp = (temp) + (dt.timedelta(hours  =16))
    return(temp)

data = """\
    '12-31-2012',5100, 5200
    '01/1/2013',5300,5400"""

tdata = pd.read_csv(StringIO(data),
    names =    ['date', 'field1', 'field'], index_col = None,
    parse_dates =['date'], header= None)

print tdata

old_date = tdata.ix[0,'date']
print 'old date =',old_date
new_date = addtime(old_date)
print 'new date =',new_date

#                 date  field1  field
#0  2012-12-31 00:00:00    5100   5200
#1  2013-01-01 00:00:00    5300   5400
#old date = 2012-12-31 00:00:00
#new date = 2012-12-31 16:00:00

I would like to add 16 hours to each date as part of the Pandas CSV reader. but I can't figure out how to add a "parse_dates=" that works. The sample code performs the operation correctly, just not in the desired manner. Help would be appreciated.

解决方案

Use the date_parser parameter. Ordinarily, that defaults to dateutil.parser.parse, but you can specify a custom function (such as addtime, below) which not only parses the date string but also adds a timedelta as well.

from StringIO import StringIO
import datetime as dt
import pandas as pd
import dateutil.parser as parser

def addtime(temp):
    temp = parser.parse(temp) + dt.timedelta(hours=16)
    return temp

data = """\
    '12-31-2012',5100, 5200
    '01/1/2013',5300,5400"""

tdata = pd.read_csv(StringIO(data),
    names = ['date', 'field1', 'field'], index_col = None,
    parse_dates =['date'], header= None, date_parser=addtime)

print tdata

yields

                  date  field1  field
0  2012-12-31 16:00:00    5100   5200
1  2013-01-01 16:00:00    5300   5400

这篇关于在pandas csv阅读器中的日期转换的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-05 19:55