问题描述
我正在从R过渡到Python.我刚开始使用熊猫.我有一个很好的子集的R代码:
I am transitioning from R to Python. I just began using Pandas. I have an R code that subsets nicely:
k1 <- subset(data, Product = p.id & Month < mn & Year == yr, select = c(Time, Product))
现在,我想在Python中做类似的事情.这是到目前为止我得到的:
Now, I want to do similar stuff in Python. this is what I have got so far:
import pandas as pd
data = pd.read_csv("../data/monthly_prod_sales.csv")
#first, index the dataset by Product. And, get all that matches a given 'p.id' and time.
data.set_index('Product')
k = data.ix[[p.id, 'Time']]
# then, index this subset with Time and do more subsetting..
我开始感到自己在以错误的方式进行此操作.也许,有一个优雅的解决方案.有人可以帮忙吗?我需要从我拥有的时间戳中提取月份和年份,然后进行子集设置.也许有一条线可以完成所有这一切:
I am beginning to feel that I am doing this the wrong way. perhaps, there is an elegant solution. Can anyone help? I need to extract month and year from the timestamp I have and do subsetting. Perhaps there is a one-liner that will accomplish all this:
k1 <- subset(data, Product = p.id & Time >= start_time & Time < end_time, select = c(Time, Product))
谢谢.
推荐答案
我假定Time
和Product
是DataFrame
中的列,df
是DataFrame
的实例,并且其他变量是标量值:
I'll assume that Time
and Product
are columns in a DataFrame
, df
is an instance of DataFrame
, and that other variables are scalar values:
现在,您必须引用DataFrame
实例:
For now, you'll have to reference the DataFrame
instance:
k1 = df.loc[(df.Product == p_id) & (df.Time >= start_time) & (df.Time < end_time), ['Time', 'Product']]
由于&
运算符相对于比较运算符的优先级,括号也是必需的. &
运算符实际上是重载的按位运算符,其优先级与算术运算符相同,而算术运算符的优先级又高于比较运算符.
The parentheses are also necessary, because of the precedence of the &
operator vs. the comparison operators. The &
operator is actually an overloaded bitwise operator which has the same precedence as arithmetic operators which in turn have a higher precedence than comparison operators.
在pandas
0.13中,一个新的实验性 方法将可用.它与select
参数取模的子集极为相似:
In pandas
0.13 a new experimental DataFrame.query()
method will be available. It's extremely similar to subset modulo the select
argument:
使用query()
,您可以这样做:
df[['Time', 'Product']].query('Product == p_id and Month < mn and Year == yr')
这是一个简单的例子:
In [9]: df = DataFrame({'gender': np.random.choice(['m', 'f'], size=10), 'price': poisson(100, size=10)})
In [10]: df
Out[10]:
gender price
0 m 89
1 f 123
2 f 100
3 m 104
4 m 98
5 m 103
6 f 100
7 f 109
8 f 95
9 m 87
In [11]: df.query('gender == "m" and price < 100')
Out[11]:
gender price
0 m 89
4 m 98
9 m 87
您感兴趣的最终查询甚至可以利用链式比较,如下所示:
The final query that you're interested will even be able to take advantage of chained comparisons, like this:
k1 = df[['Time', 'Product']].query('Product == p_id and start_time <= Time < end_time')
这篇关于子集一个Python DataFrame的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!