用正方形优化填充网格图形

用正方形优化填充网格图形

本文介绍了用正方形优化填充网格图形的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

最近,我为孩子们设计了一个拼图.但是,我现在想找到最佳解决方案.

recently I have designed a puzzle for children to solve. However I would like to now the optimal solution.

问题如下:您已经用小方块组成了这个数字

The problem is as follows: You have this figure made up off small squares

您必须用较大的正方形填充它,并在下表中对其进行评分:

You have to fill it in with larger squares and it is scored with the following table:

| Square Size | 1x1 | 2x2 | 3x3 | 4x4 | 5x5 | 6x6 | 7x7 | 8x8 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Points      | 0   | 4   | 10  | 20  | 35  | 60  | 84  | 120 |

有很多可能的解决方案可以对它们全部进行检查.其他人建议使用动态编程,但是我不知道如何将图形划分为较小的图形,这些较小的图形具有相同的最佳解决方案.

There are simply to many possible solutions to check them all. Some other people suggested dynamic programming, but I don't know how to divide the figure in smaller ones which put together have the same optimal solution.

我想找到一种在合理的时间内(例如,在常规台式机上最多几天)为这些问题找到最佳解决方案的方法.到目前为止,通过猜测算法和一些手工工作得出的最高分是1112.

I would like to find a way to find the optimal solutions to these kinds of problems in reasonable time (like a couple of days max on a regular desktop). The highest score found so far with a guessing algorithm and some manual work is 1112.

通过组合子问题来解决类似问题的解决方案也受到赞赏.我不需要写出所有代码.一个算法的提纲或想法就足够了.

Solutions to similar problems with combining sub-problems are also appreciated.I don't need all the code written out. An outline or idea for an algorithm would be enough.

注意:可以容纳的最大正方形是8x8,因此不包括较大正方形的分数.

Note: The biggest square that can fit is 8x8 so scores for bigger squares are not included.

[[1,1,0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1],
 [1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1],
 [1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1],
 [0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0],
 [0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1],
 [0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1],
 [1,0,0,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1],
 [1,1,0,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,1],
 [1,1,1,0,0,0,0,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,0,1,1,1,0,0,0],
 [0,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0],
 [0,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0],
 [0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0],
 [0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1],
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,1],
 [0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1],
 [0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
 [0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
 [1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
 [1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
 [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
 [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
 [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
 [0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
 [0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1],
 [0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
 [0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1],
 [0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1],
 [0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1],
 [1,1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1],
 [1,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1],
 [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1],
 [1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1],
 [1,1,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,1,1],
 [1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,1,1],
 [1,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,1,1],
 [1,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1],
 [0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1],
 [0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1],
 [0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1]];

推荐答案

这是一个使用 Mixed-integer-programming 的通用原型,它可以优化解决您的实例(i就像推论自己一样获得了1112的值),也可能会解决其他问题.

Here is a quite general prototype using Mixed-integer-programming which solves your instance optimally (i obtained the value of 1112 like you deduced yourself) and might solve others too.

通常,您的问题是 np-complete ,这使您很难(在某些情况下会遇到麻烦).

In general, your problem is np-complete and this makes it hard (there are some instances which will be trouble).

虽然我怀疑基于 SAT-solver CP-solver 的方法可能更强大(由于具有组合性,我甚至对MIP在这里工作感到惊讶) ,MIP方法也有一些优点:

While i suspect that SAT-solver and CP-solver based approaches might be more powerful (because of the combinatoric nature; i even was surprised that MIP works here), the MIP-approach has also some advantages:

  • MIP求解器是完整(如SAT和CP;但是许多随机的-不是基于启发式的):
  • 如有需要,有许多商业级求解器可用
  • 公式相当简单(尤其是与SAT相比; SAT公式将需要n次公式中最多k个高级(用于计分公式),而这些公式正在逐步发展(二次方程式)方法成倍增长)!它们确实存在,但并非无关紧要)
  • 优化目标是自然的(SAT和CP需要迭代精炼=使用一些下界进行求解;增量约束并重新求解)
  • MIP求解器还可以非常强大地获得最佳解的近似值,并提供一些经过验证的界线(例如,最佳解小于x)
  • MIP-solvers are complete (as SAT and CP; but many random-based heuristics are not):
  • There are many commercial-grade solvers available if needed
  • The formulation is quite easy (especially compared to SAT; SAT-formulations will need advanced at most k out of n-formulations (for scoring-formulations) which are growing sub-quadratic (the naive approach grows exponentially)! They do exist, but are non-trivial)
  • The optimization-objective is just natural (SAT and CP would need iterative-refining = solve with some lower-bound; increment bound and re-solve)
  • MIP-solvers can also be quite powerful to obtain approximations of the optimal solution and also provide some proven bounds (e.g. optimum lower than x)

以下代码是使用可用的常见科学工具(全部为开源)在 python 中实现的.它允许设置图块范围(例如添加9x9图块)和不同的成本函数.评论应该足以理解这些想法.它将使用一些(可能是最好的)开源MIP求解器,但也可以使用商业性的(注释过的行显示用法).

The following code is implemented in python using common scientific tools available (all of these are open-source). It allows setting the tile-range (e.g. adding 9x9 tiles) and different cost-functions. The comments should be enough to understand the ideas. It will use some (probably the best) open-source MIP-solver, but can also use commercial ones (outcommented line shows usage).

import numpy as np
import itertools
from collections import defaultdict
import matplotlib.pyplot as plt     # visualization only
import seaborn as sns               # ""
from pulp import *                  # MIP-modelling & solver

""" INSTANCE """
instance = np.asarray([[1,1,0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1],
 [1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1],
 [1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1],
 [0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0],
 [0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1],
 [0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1],
 [1,0,0,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1],
 [1,1,0,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,1],
 [1,1,1,0,0,0,0,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,0,1,1,1,0,0,0],
 [0,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0],
 [0,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0],
 [0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0],
 [0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1],
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,1],
 [0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1],
 [0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
 [0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
 [1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
 [1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
 [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
 [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
 [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
 [0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
 [0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1],
 [0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
 [0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1],
 [0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1],
 [0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1],
 [1,1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1],
 [1,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1],
 [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1],
 [1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1],
 [1,1,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,1,1],
 [1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,1,1],
 [1,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,1,1],
 [1,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1],
 [0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1],
 [0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1],
 [0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1]], dtype=bool)

def plot_compare(instance, solution, subgrids):
    f, (ax1, ax2) = plt.subplots(2, sharex=True, sharey=True)
    sns.heatmap(instance, ax=ax1, cbar=False, annot=True)
    sns.heatmap(solution, ax=ax2, cbar=False, annot=True)
    plt.show()

""" PARAMETERS """
SUBGRIDS = 8  # 1x1 - 8x8
SUGBRID_SCORES = {1:0, 2:4, 3:10, 4:20, 5:35, 6:60, 7:84, 8:120}
N, M = instance.shape  # free / to-fill = zeros!

""" HELPER FUNCTIONS """
def get_square_covered_indices(instance, pos_x, pos_y, sg):
    """ Calculate all covered tiles when given a top-left position & size
            -> returns the base-index too! """
    N, M = instance.shape
    neighbor_indices = []
    valid = True
    for sX in range(sg):
        for sY in range(sg):
            if pos_x + sX < N:
                if pos_y + sY < M:
                    if instance[pos_x + sX, pos_y + sY] == 0:
                        neighbor_indices.append((pos_x + sX, pos_y + sY))
                    else:
                        valid = False
                        break
                else:
                    valid = False
                    break
            else:
                valid = False
                break
    return valid, neighbor_indices

def preprocessing(instance, SUBGRIDS):
    """ Calculate all valid placement / tile-selection combinations """
    placements = {}
    index2placement = {}
    placement2index = {}
    placement2type = {}
    type2placement = defaultdict(list)
    cover2index = defaultdict(list)  # cell covered by placement-index

    index_gen = itertools.count()
    for sg in range(1, SUBGRIDS+1):  # sg = subgrid size
        for pos_x in range(N):
            for pos_y in range(M):
                if instance[pos_x, pos_y] == 0:  # free
                    feasible, covering = get_square_covered_indices(instance, pos_x, pos_y, sg)
                    if feasible:
                        new_index = next(index_gen)
                        placements[(sg, pos_x, pos_y)] = covering
                        index2placement[new_index] = (sg, pos_x, pos_y)
                        placement2index[(sg, pos_x, pos_y)] = new_index
                        placement2type[new_index] = sg
                        type2placement[sg].append(new_index)
                        cover2index[(pos_x, pos_y)].append(new_index)

    return placements, index2placement, placement2index, placement2type, type2placement, cover2index

def calculate_collisions(placements, index2placement):
    """ Calculate collisions between tile-placements (position + tile-selection)
        -> only upper triangle is used: a < b! """
    n_p = len(placements)
    coll_mat = np.zeros((n_p, n_p), dtype=bool)  # only upper triangle is used

    for pA in range(n_p):
        for pB in range(n_p):
            if pA < pB:
                covered_A = placements[index2placement[pA]]
                covered_B = placements[index2placement[pB]]
                if len(set(covered_A).intersection(set(covered_B))) > 0:
                    coll_mat[pA, pB] = True

    return coll_mat

""" PREPROCESSING """
placements, index2placement, placement2index, placement2type, type2placement, cover2index = preprocessing(instance, SUBGRIDS)
N_P = len(placements)
coll_mat = calculate_collisions(placements, index2placement)

""" MIP-MODEL """
prob = LpProblem("GridFill", LpMaximize)

# Variables
X = np.empty(N_P, dtype=object)
for x in range(N_P):
    X[x] = LpVariable('x'+str(x), 0, 1, cat='Binary')

# Objective
placement_scores = [SUGBRID_SCORES[index2placement[p][0]] for p in range(N_P)]
prob += lpDot(placement_scores, X), "Score"

# Constraints
# C1: Forbid collisions of placements
for a in range(N_P):
    for b in range(N_P):
        if a < b:  # symmetry-reduction
            if coll_mat[a, b]:
                prob += X[a] + X[b] <= 1  # not both!

""" SOLVE """
print('solve')
#prob.solve(GUROBI())  # much faster commercial solver; if available
prob.solve(PULP_CBC_CMD(msg=1, presolve=True, cuts=True))
print("Status:", LpStatus[prob.status])

""" INTERPRET AND COMPLETE SOLUTION """
solution = np.zeros((N, M), dtype=int)
for x in range(N_P):
    if X[x].value() > 0.99:
        sg, pos_x, pos_y = index2placement[x]
        _, positions = get_square_covered_indices(instance, pos_x, pos_y, sg)
        for pos in positions:
            solution[pos[0], pos[1]] = sg

fill_with_ones = np.logical_and((solution == 0), (instance == 0))
solution[fill_with_ones] = 1

""" VISUALIZE """
plot_compare(instance, solution, SUBGRIDS)

假设/算法性质

  • 没有约束条件可以描述每个空闲单元的需求
    • 在没有负分的情况下可以使用
    • 如果能改善目标,则得分为正
    • 零分(如您的示例)可能会使某些单元格空闲,但事实证明它们是1的单元格(在优化后添加)
    • Assumptions / Nature of algorithm

      • There are no constraints describing the need for every free cell to be covered
        • This works when there are not negative scores
        • A positive score will be placed if it improves the objective
        • A zero-score (like your example) might keep some cells free, but these are proven to be 1's then (added after optimizing)
        • 这是开源解决方案与商业解决方案之间的差异的一个很好的例子.尝试使用的两个求解器是 cbc 古罗比.

          This is a good example of the discrepancy between open-source and commercial solvers. The two solvers tried were cbc and Gurobi.

          Result - Optimal solution found
          
          Objective value:                1112.00000000
          Enumerated nodes:               0
          Total iterations:               307854
          Time (CPU seconds):             2621.19
          Time (Wallclock seconds):       2627.82
          
          Option for printingOptions changed from normal to all
          Total time (CPU seconds):       2621.57   (Wallclock seconds):       2628.24
          

          需要:〜45分钟

          Explored 0 nodes (7004 simplex iterations) in 5.30 seconds
          Thread count was 4 (of 4 available processors)
          
          Optimal solution found (tolerance 1.00e-04)
          Best objective 1.112000000000e+03, best bound 1.112000000000e+03, gap 0.0%
          

          需要: 6秒

          • Gurobi应该具有更多功能来识别问题的性质并在内部使用适当的超参数
          • 我还认为内部使用了一些基于SAT的方法(因为其中一位核心开发人员在撰写论文时主要是结合了这些非常不同的算法技术)
          • 使用了更好的启发式方法,可以快速提供非最佳解决方案(这将有助于后续步骤)

          这篇关于用正方形优化填充网格图形的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-05 14:36