本文介绍了获取WrappedArray行valule并将其转换为Scala中的字符串的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个数据框,如下图所示
I have a data frame which comes as like below
+---------------------------------------------------------------------+
|value |
+---------------------------------------------------------------------+
|[WrappedArray(LineItem_organizationId, LineItem_lineItemId)] |
|[WrappedArray(OrganizationId, LineItemId, SegmentSequence_segmentId)]|
+---------------------------------------------------------------------+
在上面两行中,我要创建一个格式为
From the above two rows I want to create a string which is in this format
"LineItem_organizationId", "LineItem_lineItemId"
"OrganizationId", "LineItemId", "SegmentSequence_segmentId"
我想将其创建为动态的,因此在第一列中出现第三个值时,我的字符串将再有一个单独的列值.
I want to create this as dynamic so in first column third value is present my string will have one more , separated columns value .
我如何在Scala中做到这一点.
How can I do this in Scala .
这就是我为了创建数据框所做的事情
this is what I am doing in order to create data frame
val xmlFiles = "C://Users//u6034690//Desktop//SPARK//trfsmallfffile//XML"
val discriptorFileLOcation = "C://Users//u6034690//Desktop//SPARK//trfsmallfffile//FinancialLineItem//REFXML"
import sqlContext.implicits._
val dfDiscriptor = sqlContext.read.format("com.databricks.spark.xml").option("rowTag", "FlatFileDescriptor").load(discriptorFileLOcation)
dfDiscriptor.printSchema()
val firstColumn = dfDiscriptor.select($"FFFileType.FFRecord.FFField").as("FFField")
val FirstColumnOfHeaderFile = firstColumn.select(explode($"FFField")).as("ColumnsDetails").select(explode($"col")).first.get(0).toString().split(",")(5)
println(FirstColumnOfHeaderFile)
//dfDiscriptor.printSchema()
val primaryKeyColumnsFinancialLineItem = dfDiscriptor.select(explode($"FFFileType.FFRecord.FFPrimKey.FFPrimKeyCol"))
primaryKeyColumnsFinancialLineItem.show(false)
添加完整架构
root
|-- FFColumnDelimiter: string (nullable = true)
|-- FFContentItem: struct (nullable = true)
| |-- _VALUE: string (nullable = true)
| |-- _ffMajVers: long (nullable = true)
| |-- _ffMinVers: double (nullable = true)
|-- FFFileEncoding: string (nullable = true)
|-- FFFileType: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- FFPhysicalFile: array (nullable = true)
| | | |-- element: struct (containsNull = true)
| | | | |-- FFFileName: string (nullable = true)
| | | | |-- FFRowCount: long (nullable = true)
| | |-- FFRecord: struct (nullable = true)
| | | |-- FFField: array (nullable = true)
| | | | |-- element: struct (containsNull = true)
| | | | | |-- FFColumnNumber: long (nullable = true)
| | | | | |-- FFDataType: string (nullable = true)
| | | | | |-- FFFacets: struct (nullable = true)
| | | | | | |-- FFMaxLength: long (nullable = true)
| | | | | | |-- FFTotalDigits: long (nullable = true)
| | | | | |-- FFFieldIsOptional: boolean (nullable = true)
| | | | | |-- FFFieldName: string (nullable = true)
| | | | | |-- FFForKey: struct (nullable = true)
| | | | | | |-- FFForKeyCol: string (nullable = true)
| | | | | | |-- FFForKeyRecord: string (nullable = true)
| | | |-- FFPrimKey: struct (nullable = true)
| | | | |-- FFPrimKeyCol: array (nullable = true)
| | | | | |-- element: string (containsNull = true)
| | | |-- FFRecordType: string (nullable = true)
|-- FFHeaderRow: boolean (nullable = true)
|-- FFId: string (nullable = true)
|-- FFRowDelimiter: string (nullable = true)
|-- FFTimeStamp: string (nullable = true)
|-- _env: string (nullable = true)
|-- _ffMajVers: long (nullable = true)
|-- _ffMinVers: double (nullable = true)
|-- _ffPubstyle: string (nullable = true)
|-- _schemaLocation: string (nullable = true)
|-- _sr: string (nullable = true)
|-- _xmlns: string (nullable = true)
|-- _xsi: string (nullable = true)
推荐答案
查看给定的dataframe
+---------------------------------------------------------------------+
|value |
+---------------------------------------------------------------------+
|[WrappedArray(LineItem_organizationId, LineItem_lineItemId)] |
|[WrappedArray(OrganizationId, LineItemId, SegmentSequence_segmentId)]|
+---------------------------------------------------------------------+
它必须具有以下schema
|-- value: array (nullable = true)
| |-- element: array (containsNull = true)
| | |-- element: string (containsNull = true)
如果以上假设成立,则您应将udf
函数编写为
If the above assumption are true then you should write a udf
function as
import org.apache.spark.sql.functions._
def arrayToString = udf((arr: collection.mutable.WrappedArray[collection.mutable.WrappedArray[String]]) => arr.flatten.mkString(", "))
并在dataframe
中将其用作
df.withColumn("value", arrayToString($"value"))
您应该拥有
+-----------------------------------------------------+
|value |
+-----------------------------------------------------+
|LineItem_organizationId, LineItem_lineItemId |
|OrganizationId, LineItemId, SegmentSequence_segmentId|
+-----------------------------------------------------+
|-- value: string (nullable = true)
这篇关于获取WrappedArray行valule并将其转换为Scala中的字符串的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!