本文介绍了分解趋势、季节性和剩余时间序列元素的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个带有几个时间序列的 DataFrame:

I have a DataFrame with a few time series:

         divida    movav12       var  varmovav12
Date
2004-01       0        NaN       NaN         NaN
2004-02       0        NaN       NaN         NaN
2004-03       0        NaN       NaN         NaN
2004-04      34        NaN       inf         NaN
2004-05      30        NaN -0.117647         NaN
2004-06      44        NaN  0.466667         NaN
2004-07      35        NaN -0.204545         NaN
2004-08      31        NaN -0.114286         NaN
2004-09      30        NaN -0.032258         NaN
2004-10      24        NaN -0.200000         NaN
2004-11      41        NaN  0.708333         NaN
2004-12      29  24.833333 -0.292683         NaN
2005-01      31  27.416667  0.068966    0.104027
2005-02      28  29.750000 -0.096774    0.085106
2005-03      27  32.000000 -0.035714    0.075630
2005-04      30  31.666667  0.111111   -0.010417
2005-05      31  31.750000  0.033333    0.002632
2005-06      39  31.333333  0.258065   -0.013123
2005-07      36  31.416667 -0.076923    0.002660

我想分解第一个时间序列divida,以便将其趋势与其季节性和残差成分分开.

I want to decompose the first time series divida in a way that I can separate its trend from its seasonal and residual components.

我在这里找到了答案,我正在尝试使用以下内容代码:

I found an answer here, and am trying to use the following code:

import statsmodels.api as sm

s=sm.tsa.seasonal_decompose(divida.divida)

但是我不断收到此错误:

However I keep getting this error:

Traceback (most recent call last):
File "/Users/Pred_UnBR_Mod2.py", line 78, in <module> s=sm.tsa.seasonal_decompose(divida.divida)
File "/Library/Python/2.7/site-packages/statsmodels/tsa/seasonal.py", line 58, in seasonal_decompose _pandas_wrapper, pfreq = _maybe_get_pandas_wrapper_freq(x)
File "/Library/Python/2.7/site-packages/statsmodels/tsa/filters/_utils.py", line 46, in _maybe_get_pandas_wrapper_freq
freq = index.inferred_freq
AttributeError: 'Index' object has no attribute 'inferred_freq'

我该如何继续?

推荐答案

当您将 index 转换为 DateTimeIndex 时效果很好:

Works fine when you convert your index to DateTimeIndex:

df.reset_index(inplace=True)
df['Date'] = pd.to_datetime(df['Date'])
df = df.set_index('Date')
s=sm.tsa.seasonal_decompose(df.divida)

<statsmodels.tsa.seasonal.DecomposeResult object at 0x110ec3710>

通过以下方式访问组件:

Access the components via:

s.resid
s.seasonal
s.trend

这篇关于分解趋势、季节性和剩余时间序列元素的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-05 11:07