本文介绍了整数立方根的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我在寻找快速code为64位(无符号)立方根。 (我使用C和用gcc编译,但我想大多数人会是语言和编译器无关的。工作需要的),我将通过ULONG 64位unisgned整数表示。

给定输入n个I所需要的(积分)返回值r为使得

  R * R *为r = N&放大器;&安培; N'LT; (R + 1)*(R + 1)*(R + 1)

这就是我想要n的立方根,四舍五入。基本code像

 收益率(ULONG)POW(N,1.0 / 3);

不正确,因为朝向范围的结束四舍五入。性格单纯code像

  ULONG
cuberoot(ULONG N)
{
    ULONG RET = POW(N + 0.5,1.0 / 3);
    如果(N< 100000000000001ULL)
        返回RET;
    如果(N> = 18446724184312856125ULL)
        返回2642245ULL;
    如果(RET * RET * RET> N){
        ret--;
        而(RET * RET * RET> N)
            ret--;
        返回RET;
    }
    而((保留+ 1)*(保留+ 1)*(保留+ 1) - ; = n)的
        RET ++;
    返回RET;
}

给出正确的结果,但是慢于它需要

这code是一个数学库,它会从各种功能调用多次。速度是重要的,但你不能在一个温暖的高速缓存数(所以像2642245入境二进制搜索建议是正确的了)。

为了便于比较,这里是code,它的正确的计算整数的平方根。

  ULONG平方根(ULONG一){
    ULONG X =(ULONG)的sqrt((双)一);
    如果(X GT; 0xFFFFFFFF的|| X * X>一种)
        X - ;
    返回X;
}


解决方案

这本书黑客的喜悦对这一算法和许多其他问题。在code是在线 rel=\"nofollow\">。的修改的:那code不能与64位整数的正常工作,并在书中对如何解决它的64位指令是有些混乱。一个适当的64位实现(包括测试用例)在线 rel=\"nofollow\">。

我怀疑你的平方根函数是正确的 - 它应该是 ULONG一个的说法,不 N :)(但同样的方法将工作中使用 CBRT 而不是开方,虽然不是所有的C数学库有立方根函数)。

I'm looking for fast code for 64-bit (unsigned) cube roots. (I'm using C and compiling with gcc, but I imagine most of the work required will be language- and compiler-agnostic.) I will denote by ulong a 64-bit unisgned integer.

Given an input n I require the (integral) return value r to be such that

r * r * r <= n && n < (r + 1) * (r + 1) * (r + 1)

That is, I want the cube root of n, rounded down. Basic code like

return (ulong)pow(n, 1.0/3);

is incorrect because of rounding toward the end of the range. Unsophisticated code like

ulong
cuberoot(ulong n)
{
    ulong ret = pow(n + 0.5, 1.0/3);
    if (n < 100000000000001ULL)
        return ret;
    if (n >= 18446724184312856125ULL)
        return 2642245ULL;
    if (ret * ret * ret > n) {
        ret--;
        while (ret * ret * ret > n)
            ret--;
        return ret;
    }
    while ((ret + 1) * (ret + 1) * (ret + 1) <= n)
        ret++;
    return ret;
}

gives the correct result, but is slower than it needs to be.

This code is for a math library and it will be called many times from various functions. Speed is important, but you can't count on a warm cache (so suggestions like a 2,642,245-entry binary search are right out).

For comparison, here is code that correctly calculates the integer square root.

ulong squareroot(ulong a) {
    ulong x = (ulong)sqrt((double)a);
    if (x > 0xFFFFFFFF || x*x > a)
        x--;
    return x;
}

The book "Hacker's Delight" has algorithms for this and many other problems. The code is online here. EDIT: That code doesn't work properly with 64-bit ints, and the instructions in the book on how to fix it for 64-bit are somewhat confusing. A proper 64-bit implementation (including test case) is online here.

I doubt that your squareroot function works "correctly" - it should be ulong a for the argument, not n :) (but the same approach would work using cbrt instead of sqrt, although not all C math libraries have cube root functions).

这篇关于整数立方根的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-05 10:21