本文介绍了如何使用Sklearn.preprocessing对包含列表的pandas.DataFrame列进行编码的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个pandas df,有些列是其中包含数据的列表,我想对列表中的标签进行编码。
I have a pandas df and some of the columns are lists with data in them and I would like to encode the labels within the lists.
我遇到此错误:
ValueError:预期的2D数组,而是1D数组:
from sklearn.preprocessing import OneHotEncoder
mins = pd.read_csv('recipes.csv')
enc = OneHotEncoder(handle_unknown='ignore')
X = mins['Ingredients']
'''
[[lettuce, tomatoes, ginger, vodka, tomatoes]
[lettuce, tomatoes, flour, vodka, tomatoes]
...
[flour, tomatoes, vodka, vodka, mustard]]
'''
enc.fit(X)
我希望获得一列具有正确编码信息的列表
I hope to get a a column of lists that would have the correctly encoded information
[[lettuce, tomatoes, ginger, vodka, tomatoes]
[lettuce, tomatoes, flour, vodka, tomatoes]
...
[flour, tomatoes, vodka, vodka, mustard]
[[0, 1, 2, 3, 1]
[0, 1, 4, 3, 1]
...
[4, 1, 3, 3, 9]]
推荐答案
要对DataFrame系列中的列表列表进行标签编码,我们首先使用唯一的文本标签训练编码器,然后使用 apply
进行 transform
将每个文本标签更改为列表列表中经过训练的整数标签。下面是一个示例:
To label encode list of lists in a DataFrame series, we first train the encoder with the unique text labels and then use apply
to transform
each text label to the trained integer label in the list of lists. Here is an example:
In [2]: import pandas as pd
In [3]: from sklearn import preprocessing
In [4]: df = pd.DataFrame({"Day":["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"], "Veggies&Drinks":[["lettuce"
...: , "tomatoes", "ginger", "vodka", "tomatoes"], ["flour", "vodka", "mustard", "lettuce", "ginger"], ["mustard", "
...: tomatoes", "ginger", "vodka", "tomatoes"], ["ginger", "vodka", "lettuce", "tomatoes", "flour"], ["mustard", "le
...: ttuce", "ginger", "flour", "tomatoes"]]})
In [5]: df
Out[5]:
Day Veggies&Drinks
0 Monday [lettuce, tomatoes, ginger, vodka, tomatoes]
1 Tuesday [flour, vodka, mustard, lettuce, ginger]
2 Wednesday [mustard, tomatoes, ginger, vodka, tomatoes]
3 Thursday [ginger, vodka, lettuce, tomatoes, flour]
4 Friday [mustard, lettuce, ginger, flour, tomatoes]
In [9]: label_encoder = preprocessing.LabelEncoder()
In [19]: list_of_veggies_drinks = ["lettuce","tomatoes","ginger","vodka","flour","mustard"]
In [20]: label_encoder.fit(list_of_veggies_drinks)
Out[20]: LabelEncoder()
In [21]: integer_encoded = df["Veggies&Drinks"].apply(lambda x:label_encoder.transform(x))
In [22]: integer_encoded
Out[22]:
0 [2, 4, 1, 5, 4]
1 [0, 5, 3, 2, 1]
2 [3, 4, 1, 5, 4]
3 [1, 5, 2, 4, 0]
4 [3, 2, 1, 0, 4]
Name: Veggies&Drinks, dtype: object
In [23]: df["Encoded"] = integer_encoded
In [24]: df
Out[24]:
Day Veggies&Drinks Encoded
0 Monday [lettuce, tomatoes, ginger, vodka, tomatoes] [2, 4, 1, 5, 4]
1 Tuesday [flour, vodka, mustard, lettuce, ginger] [0, 5, 3, 2, 1]
2 Wednesday [mustard, tomatoes, ginger, vodka, tomatoes] [3, 4, 1, 5, 4]
3 Thursday [ginger, vodka, lettuce, tomatoes, flour] [1, 5, 2, 4, 0]
4 Friday [mustard, lettuce, ginger, flour, tomatoes] [3, 2, 1, 0, 4]
这篇关于如何使用Sklearn.preprocessing对包含列表的pandas.DataFrame列进行编码的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!