本文介绍了 pandas 多处理申请的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试对pandas数据框使用多重处理,即将数据框分为8个部分.使用Apply将某些功能应用于每个部件(每个部件在不同的过程中进行处理).
I'm trying to use multiprocessing with pandas dataframe, that is split the dataframe to 8 parts. apply some function to each part using apply (with each part processed in different process).
这是我终于找到的解决方案:
Here's the solution I finally found:
import multiprocessing as mp
import pandas.util.testing as pdt
def process_apply(x):
# do some stuff to data here
def process(df):
res = df.apply(process_apply, axis=1)
return res
if __name__ == '__main__':
p = mp.Pool(processes=8)
split_dfs = np.array_split(big_df,8)
pool_results = p.map(aoi_proc, split_dfs)
p.close()
p.join()
# merging parts processed by different processes
parts = pd.concat(pool_results, axis=0)
# merging newly calculated parts to big_df
big_df = pd.concat([big_df, parts], axis=1)
# checking if the dfs were merged correctly
pdt.assert_series_equal(parts['id'], big_df['id'])
推荐答案
您可以使用 https://github.com /nalepae/pandarallel ,如以下示例所示:
You can use https://github.com/nalepae/pandarallel, as in the following example:
from pandarallel import pandarallel
from math import sin
pandarallel.initialize()
def func(x):
return sin(x**2)
df.parallel_apply(func, axis=1)
这篇关于 pandas 多处理申请的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!