本文介绍了 pandas "diff()"带线的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
每当列更改其字符串值时,如何标记数据框中的行?
How can I flag a row in a dataframe every time a column change its string value?
例如:
输入
ColumnA ColumnB
1 Blue
2 Blue
3 Red
4 Red
5 Yellow
# diff won't work here with strings.... only works in numerical values
dataframe['changed'] = dataframe['ColumnB'].diff()
ColumnA ColumnB changed
1 Blue 0
2 Blue 0
3 Red 1
4 Red 0
5 Yellow 1
推荐答案
使用ne
可以获得更好的性能,而不是使用实际的!=
比较:
I get better performance with ne
instead of using the actual !=
comparison:
df['changed'] = df['ColumnB'].ne(df['ColumnB'].shift().bfill()).astype(int)
时间
使用以下设置来产生更大的数据帧:
Using the following setup to produce a larger dataframe:
df = pd.concat([df]*10**5, ignore_index=True)
我得到以下计时:
%timeit df['ColumnB'].ne(df['ColumnB'].shift().bfill()).astype(int)
10 loops, best of 3: 38.1 ms per loop
%timeit (df.ColumnB != df.ColumnB.shift()).astype(int)
10 loops, best of 3: 77.7 ms per loop
%timeit df['ColumnB'] == df['ColumnB'].shift(1).fillna(df['ColumnB'])
10 loops, best of 3: 99.6 ms per loop
%timeit (df.ColumnB.ne(df.ColumnB.shift())).astype(int)
10 loops, best of 3: 19.3 ms per loop
这篇关于 pandas "diff()"带线的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!