本文介绍了numpy和python中的图像的简单,高效的双线性插值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
如何对在python中表示为numpy数组的图像数据实现双线性插值?
How do I implement bilinear interpolation for image data represented as a numpy array in python?
推荐答案
我发现了有关此主题的许多问题和许多答案,尽管对于数据由网格上的样本组成的常见情况(即矩形图像),这些方法都没有效果),并表示为numpy数组.此函数可以将列表作为x和y坐标,并且无需循环即可执行查找和求和.
I found many questions on this topic and many answers, though none were efficient for the common case that the data consists of samples on a grid (i.e. a rectangular image) and represented as a numpy array. This function can take lists as both x and y coordinates and will perform the lookups and summations without need for loops.
def bilinear_interpolate(im, x, y):
x = np.asarray(x)
y = np.asarray(y)
x0 = np.floor(x).astype(int)
x1 = x0 + 1
y0 = np.floor(y).astype(int)
y1 = y0 + 1
x0 = np.clip(x0, 0, im.shape[1]-1);
x1 = np.clip(x1, 0, im.shape[1]-1);
y0 = np.clip(y0, 0, im.shape[0]-1);
y1 = np.clip(y1, 0, im.shape[0]-1);
Ia = im[ y0, x0 ]
Ib = im[ y1, x0 ]
Ic = im[ y0, x1 ]
Id = im[ y1, x1 ]
wa = (x1-x) * (y1-y)
wb = (x1-x) * (y-y0)
wc = (x-x0) * (y1-y)
wd = (x-x0) * (y-y0)
return wa*Ia + wb*Ib + wc*Ic + wd*Id
这篇关于numpy和python中的图像的简单,高效的双线性插值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!