本文介绍了Parallel.ForEach比正常的foreach慢的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在C#控制台应用程序中使用Parallel.ForEach,但似乎无法正确处理.我正在创建一个具有随机数的数组,我有一个顺序的foreach和一个Parallel.ForEach,它在数组中找到最大值.使用C ++中几乎相同的代码,我开始看到在数组中使用3M值的多个线程的折衷方案.但是,即使在100M值下,Parallel.ForEach的速度也是其两倍.我在做什么错了?

I'm playing around with the Parallel.ForEach in a C# console application, but can't seem to get it right. I'm creating an array with random numbers and i have a sequential foreach and a Parallel.ForEach that finds the largest value in the array. With approximately the same code in c++ i started to see a tradeoff to using several threads at 3M values in the array. But the Parallel.ForEach is twice as slow even at 100M values. What am i doing wrong?

class Program
{
    static void Main(string[] args)
    {
        dostuff();

    }

    static void dostuff() {
        Console.WriteLine("How large do you want the array to be?");
        int size = int.Parse(Console.ReadLine());

        int[] arr = new int[size];
        Random rand = new Random();
        for (int i = 0; i < size; i++)
        {
            arr[i] = rand.Next(0, int.MaxValue);
        }

        var watchSeq = System.Diagnostics.Stopwatch.StartNew();
        var largestSeq = FindLargestSequentially(arr);
        watchSeq.Stop();
        var elapsedSeq = watchSeq.ElapsedMilliseconds;
        Console.WriteLine("Finished sequential in: " + elapsedSeq + "ms. Largest = " + largestSeq);

        var watchPar = System.Diagnostics.Stopwatch.StartNew();
        var largestPar = FindLargestParallel(arr);
        watchPar.Stop();
        var elapsedPar = watchPar.ElapsedMilliseconds;
        Console.WriteLine("Finished parallel in: " + elapsedPar + "ms Largest = " + largestPar);

        dostuff();
    }

    static int FindLargestSequentially(int[] arr) {
        int largest = arr[0];
        foreach (int i in arr) {
            if (largest < i) {
                largest = i;
            }
        }
        return largest;
    }

    static int FindLargestParallel(int[] arr) {
        int largest = arr[0];
        Parallel.ForEach<int, int>(arr, () => 0, (i, loop, subtotal) =>
        {
            if (i > subtotal)
                subtotal = i;
            return subtotal;
        },
        (finalResult) => {
            Console.WriteLine("Thread finished with result: " + finalResult);
            if (largest < finalResult) largest = finalResult;
        }
        );
        return largest;
    }
}

推荐答案

拥有非常小的代表机构会对性能产生影响.

It's performance ramifications of having a very small delegate body.

使用分区可以实现更好的性能.在这种情况下,主体代表执行的工作量很大.

We can achieve better performance using the partitioning. In this case the body delegate performs work with a high data volume.

static int FindLargestParallelRange(int[] arr)
{
    object locker = new object();
    int largest = arr[0];
    Parallel.ForEach(Partitioner.Create(0, arr.Length), () => arr[0], (range, loop, subtotal) =>
    {
        for (int i = range.Item1; i < range.Item2; i++)
            if (arr[i] > subtotal)
                subtotal = arr[i];
        return subtotal;
    },
    (finalResult) =>
    {
        lock (locker)
            if (largest < finalResult)
                largest = finalResult;
    });
    return largest;
}

请注意同步localFinally委托.还要注意需要正确初始化localInit:() => arr[0]而不是() => 0.

Pay attention to synchronize the localFinally delegate. Also note the need for proper initialization of the localInit: () => arr[0] instead of () => 0.

使用PLINQ分区:

static int FindLargestPlinqRange(int[] arr)
{
    return Partitioner.Create(0, arr.Length)
        .AsParallel()
        .Select(range =>
        {
            int largest = arr[0];
            for (int i = range.Item1; i < range.Item2; i++)
                if (arr[i] > largest)
                    largest = arr[i];
            return largest;
        })
        .Max();
}

我强烈推荐免费书籍并行编程模式由Stephen Toub.

I highly recommend free book Patterns of Parallel Programming by Stephen Toub.

这篇关于Parallel.ForEach比正常的foreach慢的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-04 20:35