NOTE:代码仅用来参考,没时间解释啦!
🍉一、自动从数据库从抽取数据。
在某台服务器中,从存放数据集的数据库自动抽取标注好的数据标签,这一步操作有什么用呢?当我们发现我们数据不均衡的时候,就如上图右边部分。我们可以从数据库中抽取缺少的数据标签进行填充。
import os
import shutil
# from get_structs import print_file_structure
import random
def print_file_structure(file_path, indent=''):
if os.path.isfile(file_path):
print(indent + '├── ' + os.path.basename(file_path))
elif os.path.isdir(file_path):
print(indent + '├── ' + os.path.basename(file_path))
for root, dirs, files in os.walk(file_path):
for name in dirs:
print(indent + '│ ├── ' + name)
for name in files:
print(indent + '│ └── ' + name)
break # Only print files in the top-level directory
break # Only print directories in the top-level directory
else:
print('无效的文件路径')
def from_dataset_get_data_label(source_dataset_path, label):
subFiles = os.listdir(source_dataset_path)
if label not in subFiles:
print("您输入的标签名无效,不存在于test子目录中!")
return
target_path = os.path.join(source_dataset_path, label)
label_lenght = count_jpg_files(target_path)
print("<{}>标签的数量统计为:【{}】".format(label, label_lenght))
print('------------------------------------')
all_need_img_paths = []
all_need_xml_paths = []
for file_name in os.listdir(target_path):
subPath = os.path.join(target_path, file_name)
if not os.path.isdir(subPath):
continue
for data_name in os.listdir(subPath):
if data_name.endswith('.jpg'):
xml_file = os.path.splitext(data_name)[0] + '.xml'
if os.path.exists(os.path.join(subPath, xml_file)):
all_need_img_paths.append(os.path.join(subPath, data_name))
all_need_xml_paths.append(os.path.join(subPath, xml_file))
# print(all_need_img_paths[:5])
print("统计有xml的图片数量:",len(all_need_img_paths))
print('------------------------------------')
get_num = int(input("请输入您要随机抽取的数据数量:"))
print('------------------------------------')
if get_num > len(all_need_img_paths):
get_num = len(all_need_img_paths) - 1
random_indexs = random.sample(range(len(all_need_img_paths)), get_num)
print("请注意!所有文件都会复制到工作目录,请慎重选择工作目录。")
print('------------------------------------')
opt = input("请选择您的移动方式:[cp/mv]")
print('------------------------------------')
while opt not in ['cp', 'mv']:
opt = input("[ERROR]请选择您的移动方式:[cp/mv]")
print('------------------------------------')
if opt == 'cp':
for inx in random_indexs:
wd = os.getcwd()
if not os.path.exists(wd + '/' + 'images'):
os.makedirs(wd + '/' + 'images')
if not os.path.exists(wd + '/' + 'Annotations'):
os.makedirs(wd + '/' + 'Annotations')
img_path = all_need_img_paths[inx]
shutil.copyfile(img_path, wd + '/' + 'images/' + img_path.split('/')[-1])
xml_path = all_need_xml_paths[inx]
shutil.copyfile(xml_path, wd + '/' + 'Annotations/' + xml_path.split('/')[-1])
elif opt == 'mv':
pass
print("在上列操作中您选择了{}标签,从中抽取了{}数据量,并且使用{}方式放到了{}工作目录下。".format(label, get_num, opt, wd))
print('------------------------------------')
def count_jpg_files(path):
count = 0
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith('.jpg'):
xml_file = os.path.splitext(file)[0] + '.xml'
if os.path.exists(os.path.join(root, xml_file)):
count += 1
return count
if __name__ == "__main__":
source_dataset_path = '/data/personal/chz/find_allimgs_label/test'
use_labels = ["zsd_m","zsd_l","fhz_h","fhz_f","kk_f","kk_h","fhz_bs", "fhz_ycn","fhz_wcn","fhz_red_h", "fhz_green_f", "fhz_m", "bs_ur", "bs_ul", "bs_up", "bs_down", "fhz_ztyc", "bs_right", "bs_left", "bs_dl", "bs_dr", "kgg_ybh", "kgg_ybf", "yljdq_flow", "yljdq_stop"]
print_file_structure(source_dataset_path, "")
print('------------------------------------')
label = input("请您根据上列中的test菜单,选取您想要的标签:")
print('------------------------------------')
from_dataset_get_data_label(source_dataset_path, label)
🍉二、 自动从指定minIo拉取图片到另外一台minIO
import minio
import pymysql
import openpyxl
import os
def get_data_from_mysql():
# 连接数据库-
conn = pymysql.connect(host="10.168.1.94", user="", passwd="", db="RemotePatrolDB", port=, charset="utf8")
cur = conn.cursor() # 创建游标对象
# 查询表中数据
cur.execute("SELECT * FROM CorrectPoint;")
df = cur.fetchall() # 获取所有数据
imageUrls = []
for data in df:
imageUrls.append(data[15])
# print(data[15])
cur.close()
conn.close()
return imageUrls
def save_for_excel(df):
wb = openpyxl.Workbook()
ws = wb.active
for row in df:
ws.append(row)
wb.save("文件名.xlsx")
# 从minio上面拉取图片
def load_data_minio(bucket: str, imageUrls):
minio_conf = {
'endpoint': '10.168.1.96:9000',
'access_key': '',
'secret_key': '',
'secure': False
}
client = minio.Minio(**minio_conf)
if not client.bucket_exists(bucket):
return None
root_path = os.path.join("imageUrlFromminIO")
for imageUrl in imageUrls:
imageUrl = imageUrl.split('/')[-1]
data = client.get_object(bucket, imageUrl)
save_path = os.path.join(root_path, imageUrl)
with open(save_path, 'wb') as file_data:
for d in data.stream(32 * 1024):
file_data.write(d)
return data.data
# 上传图片到minio
def up_data_minio(bucket: str, image_Urls_path='imageUrlFromminIO'):
# TODO:minio_conf唯一要修改的地方!
minio_conf = {
'endpoint': '192.168.120.188',
'access_key': '',
'secret_key': '',
'secure': False
}
for im_name in os.listdir(image_Urls_path):
client = minio.Minio(**minio_conf)
'''
client.fput_object('mybucket', 'myobject.jpg', '/path/to/myobject.jpg', content_type='image/jpeg')
'''
client.fput_object(bucket_name=bucket, object_name=im_name,
file_path=os.path.join(image_Urls_path, im_name),
content_type='image/jpeg'
)
def download():
# NOTE:Step:1 拉取数据库信息
imageUrls = get_data_from_mysql()
# NOTE:Step:2 把图片从96的minio上面拉下来
print(type(load_data_minio("test", imageUrls)))
def upload():
# NOTE:Step:3 把拉下来的图片传上去给XXX服务器的minio
up_data_minio("test", image_Urls_path='imageUrlFromminIO')
if __name__ == "__main__":
# 拉取使用
download()
# 上推使用
# upload()
'''
用于批量修改数据库ImagePath字段信息,替换为自己的ip。
---
UPDATE CorrectPoint SET ImagePath=REPLACE(ImagePath, '10.168.1.96', '192.168.120.188');
'''
🍉三、目标检测画出中文框并且自动红底白字
需要放一个文件到本地目录:
def cv2AddChineseText(self, img_ori, text, p1, box_color, textColor=(255, 255, 255), textSize=17):
if (isinstance(img_ori, np.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img_ori, cv2.COLOR_BGR2RGB))
# 创建一个可以在给定图像上绘图的对象
draw = ImageDraw.Draw(img)
# 字体的格式
fontStyle = ImageFont.truetype(
"simsun.ttc", textSize, encoding="utf-8")
# 绘制文本
text_width, text_height = draw.textsize(text, font=fontStyle)
position = []
outside_x = p1[0] + text_width + 3 < img.width
outside_y = p1[1] - text_height - 3 >= 0
position.append(p1[0] + 3 if outside_x else img.width - text_width)
position.append(p1[1] - text_height - 3 if outside_y else p1[1] + 3)
p2 = (position[0] + text_width, position[1] + text_height)
image = cv2.rectangle(img_ori, position, p2, box_color, -1, cv2.LINE_AA) # filled
img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
draw.text((position[0], position[1]), text, textColor, font=fontStyle)
# 转换回OpenCV格式
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
def draw_boxs(self, boxes, image):
for res in boxes:
box = [res[0], res[1], res[2]+res[0], res[3]+res[1]]
label = self.labels[res[4]]
conf = round(res[5], 4)
box = np.array(box[:4], dtype=np.int32) # xyxy
line_width = int(3)
txt_color = (255, 255, 255)
box_color = (58, 56, 255)
p1, p2 = (box[0], box[1]), (box[2], box[3])
image = cv2.rectangle(image, p1, p2, box_color, line_width)
tf = max(line_width - 1, 1) # font thickness
box_label = '%s: %.2f' % (self.get_desc(label), conf)
image = self.cv2AddChineseText(image, box_label, p1, box_color, txt_color)
return image
🍉四、标注得到的xml自动转成txt
使用labelimage标注的文件是xml的,无法用来yolo训练,所以需要使用自动转换工具把xml都转换为txt。
请确保目录结构如下:
import os
import xml.etree.ElementTree as ET
import cv2
import random
from tqdm import tqdm
from multiprocessing import Pool
import numpy as np
import shutil
'''
优化之前:
1.把函数路径改为新的数据集,先运行一次,生成txt;
2.把新的数据集Images Annotations labels都手动放入 原生数据集;
3.再把路径改回来原生数据集,再运行一次,生成txt;
问题:
(1)txt不是追加模式,虽然会在第三步被覆盖掉,但重复执行没必要。
(2)有很多地方类似(1)其实是运行了两次的。
优化之后:
1.把函数路径改为新的数据集,运行一次,完成!
'''
random.seed(0)
class Tools_xml2yolo(object):
def __init__(self,
img_path = r"ft_220/images",
anno_path = r"ft_220/annotations_xml",
label_path = r"ft_220/labels",
themeFIle = 'ft_220',
classes = [""],
the_data_is_new=False
) -> None:
self.img_path = img_path
self.anno_path = anno_path
self.label_path = label_path
self.the_data_is_new = the_data_is_new
self.classes = classes
self.txt_path = themeFIle
if the_data_is_new:
self.ftest = open(os.path.join(self.txt_path,'test.txt'), 'a')
self.ftrain = open(os.path.join(self.txt_path,'train.txt'), 'a')
else:
self.ftest = open(os.path.join(self.txt_path,'test.txt'), 'w')
self.ftrain = open(os.path.join(self.txt_path,'train.txt'), 'w')
train_percent = 1
self.files = os.listdir(self.anno_path)
num = len(self.files)
# print('num image',num)
list = range(num)
tr = int(num * train_percent)
self.train_list = random.sample(list, tr)
print('len train', self.train_list)
if not os.path.exists(self.label_path):
os.makedirs(self.label_path)
def resi(self, num):
x = round(num, 6)
x = str(abs(x))
while len(x) < 8:
x = x + str(0)
return x
def convert(self, size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0 # x = x轴中点
y = (box[2] + box[3])/2.0 # y = y轴中点
w = box[1] - box[0] #w = width
h = box[3] - box[2] # h = height
x = self.resi(x*dw)
w = self.resi(w*dw)
y = self.resi(y*dh)
h = self.resi(h*dh)
return (x,y,w,h)
# import glob
def process(self, name):
# found_flag = 0
img_names = ['.jpg','.JPG','.PNG','.png','.jpeg']
for j in img_names:
img_name = os.path.splitext(name)[0] + j
iter_image_path = os.path.join(self.img_path, img_name)
# print("iter image path:", iter_image_path)
if os.path.exists(iter_image_path):
break
xml_name = os.path.splitext(name)[0] + ".xml"
txt_name = os.path.splitext(name)[0] + ".txt"
string1 = ""
# print(name)
w,h = None, None
iter_anno_path = os.path.join(self.anno_path, xml_name)
iter_txt_path = os.path.join(self.label_path, txt_name)
xml_file = ET.parse(iter_anno_path)
root = xml_file.getroot()
try:
with open(iter_image_path, 'rb') as f:
check = f.read()[-2:]
if check != b'\xff\xd9':
print('JPEG File collapse:', iter_image_path)
a = cv2.imdecode(np.fromfile(iter_image_path,dtype=np.uint8),-1)
cv2.imencode(".jpg", a)[1].tofile(iter_image_path)
h,w = cv2.imdecode(np.fromfile(iter_image_path, dtype=np.uint8),-1).shape[:2]
print('----------Rewrite & Read image successfully----------')
else:
h,w = cv2.imdecode(np.fromfile(iter_image_path,dtype=np.uint8),-1).shape[:2]
except:
print(iter_image_path)
if (w is not None) and (h is not None):
count = 0
for child in root.findall('object'):
if child != '':
count = count + 1
if count != 0:
string1 = []
for obj in root.iter('object'):
cls = obj.find('name').text
if cls in self.classes:
cls_id = self.classes.index(cls)
else:
print(cls)
continue
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = self.convert((w, h), b)
for a in bb:
if float(a) > 1.0:
print(iter_anno_path + "wrong xywh",bb)
return
string1.append(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
out_file = open(iter_txt_path, "w")
for string in string1:
out_file.write(string)
out_file.close()
else:
print('count=0')
print(img_name)
else:
print('wh is none')
def moveNewData(self, ):
newImageDataPaths = os.listdir(self.img_path)
newAnnotationPaths = os.listdir(self.anno_path)
newLabelPaths = os.listdir(self.label_path)
for idx in range(len(newAnnotationPaths)):
shutil.move(os.path.join(self.img_path, newImageDataPaths[idx]), os.path.join(self.txt_path, "images",newImageDataPaths[idx]) )
shutil.move(os.path.join(self.anno_path, newAnnotationPaths[idx]), os.path.join(self.txt_path, "Annotations",newAnnotationPaths[idx]) )
shutil.move(os.path.join(self.label_path, newLabelPaths[idx]), os.path.join(self.txt_path, "labels",newLabelPaths[idx]) )
def run(self,):
pbar = tqdm(total=(len(self.files)))
update = lambda *args: pbar.update()
pool = Pool(6)
for i, name in enumerate(self.files):
self.process(name)
print("Iter:[{}:{}]".format(i+1, len(self.files)))
'''
pool.apply_async必须在 if __main__ == "__main__"中被定义才可以使用;
这点以后优化得了,现在数据量少还用不上。
所以改成面对对象class类这样运行,多进程是不会有反应的。所以加了上面这个函数。
本来是没有的。
'''
pool.apply_async(self.process, args=(name), callback=update)
# pbar.update(1)
pool.close()
pool.join()
img_names = ['.jpg','.JPG','.PNG','.png', '.jpeg']
for i, name in enumerate(self.files):
for j in img_names:
img_name = os.path.splitext(name)[0] + j
iter_image_path = os.path.join(self.img_path, img_name)
if os.path.exists(iter_image_path):
break
if i in self.train_list:
self.ftrain.write(iter_image_path + "\n")
else:
self.ftest.write(iter_image_path + "\n")
# writeAnnotation_path = os.path.join(self.img_path, os.path.splitext(name)[0] + '.xml')
# print("写入:", iter_image_path, writeAnnotation_path )
# 如果有只有图片没有xml的,需要生成空白txt
if self.anno_path == '':
imgs = os.listdir(self.img_path)
for img_name in imgs:
txt_name = os.path.basename(img_name).split('.')[0] + '.txt'
if not os.path.exists(os.path.join(self.label_path, txt_name)):
_ = open(os.path.join(self.label_path, txt_name),'w')
self.ftrain.write(os.path.join(self.img_path, img_name) + "\n")
if self.the_data_is_new:
self.moveNewData()
if __name__ == '__main__':
# tool = Tools_xml2yolo()
tool = Tools_xml2yolo(
img_path='datasets/jzl_zhoushan_train/images/',
anno_path='datasets/jzl_zhoushan_train/Annotations/',
label_path='datasets/jzl_zhoushan_train/labels/',
themeFIle='datasets/jzl_zhoushan_train/',
classes=["zsd_m","zsd_l","fhz_h","fhz_f","kk_f","kk_h","fhz_bs", "fhz_ycn","fhz_wcn","fhz_red_h", "fhz_green_f", "fhz_m", "bs_ur", "bs_ul", "bs_up", "bs_down", "fhz_ztyc", "bs_right", "bs_left", "bs_dl", "bs_dr", "kgg_ybh", "kgg_ybf", "yljdq_flow", "yljdq_stop"],
the_data_is_new=False)
# themeFIle是原生数据集
# 前面三个参数是新增数据集子集
# the_data_is_new=True: 自动把images\Annotations\labels移到原生数据集对应images\Annotations\labels里面
# 默认把xml转换为yolo训练所需的txt格式
tool.run()
🍉五、 使用yolo自动推理图片得到推理结果转换为训练所需xml
import os
import torch
import xml.etree.ElementTree as ET
from PIL import Image
# 分类类别名称字典
class_dict = {
'zsd_m': '指示灯灭',
'zsd_l': '指示灯亮',
'fhz_h': '分合闸-合',
'fhz_f': '分合闸-分',
'fhz_ztyc': '分合闸-状态异常',
'fhz_bs': '旋转把手',
'kk_f': '空气开关-分',
'kk_h': '空气开关-合',
'fhz_ycn': '分合闸-已储能',
'fhz_wcn': '分合闸未储能',
'fhz_red_h': '分合闸-红-合',
'fhz_green_f': '分合闸-绿-分',
'fhz_m': '分合闸-灭',
'bs_ur': '把手-右上',
'bs_ul': '把手-左上',
'bs_up': '把手-上',
'bs_down': '把手-下',
'bs_right': '把手-右',
'bs_left': '把手-左',
'bs_dl': '把手-左下',
'bs_dr': '把手-右下',
"kgg_ybf": "开关柜-压板分",
"kgg_ybh": "开关柜-压板合",
"ddzsd_green":"带电指示灯-绿色",
"ddzsd_red":"带电指示灯-红色"
}
def detect_and_save(model_path, folder_path, iter_start_index):
# 加载模型
model = torch.load(model_path, map_location=torch.device('cpu'))
# 将模型设置为评估模式
model.eval()
# 遍历文件夹下的每一张图片
for ind, file_name in enumerate(os.listdir(folder_path)):
if ind <= iter_start_index:
continue
if file_name.endswith('.jpg') or file_name.endswith('.png'):
# 打开图片
img_path = os.path.join(folder_path, file_name)
img = Image.open(img_path)
# 进行推理
results = model(img)
# 生成xml文件
root = ET.Element('annotation')
folder = ET.SubElement(root, 'folder')
folder.text = os.path.basename(folder_path)
filename = ET.SubElement(root, 'filename')
filename.text = file_name
size = ET.SubElement(root, 'size')
width = ET.SubElement(size, 'width')
width.text = str(img.width)
height = ET.SubElement(size, 'height')
height.text = str(img.height)
depth = ET.SubElement(size, 'depth')
depth.text = str(3)
for result in results.xyxy[0]:
if result[-1] in class_dict:
obj = ET.SubElement(root, 'object')
name = ET.SubElement(obj, 'name')
name.text = class_dict[result[-1]]
bndbox = ET.SubElement(obj, 'bndbox')
xmin = ET.SubElement(bndbox, 'xmin')
xmin.text = str(int(result[0]))
ymin = ET.SubElement(bndbox, 'ymin')
ymin.text = str(int(result[1]))
xmax = ET.SubElement(bndbox, 'xmax')
xmax.text = str(int(result[2]))
ymax = ET.SubElement(bndbox, 'ymax')
ymax.text = str(int(result[3]))
# 保存xml文件
xml_path = os.path.join(folder_path, os.path.splitext(file_name)[0] + '.xml')
tree = ET.ElementTree(root)
tree.write(xml_path)
if __name__ == "__main__":
detect_and_save('./best.pt', './rmwrite_zhoushan/rmwrite_zhoushan', iter_start_index=180)