本文介绍了近似e ^ x的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想近似使用 e 函数.

I'd like to approximate the e function.

是否可以使用基于多个样条线类型的方法来做到这一点?即在 x x 之间,然后

Is it possible to do so using multiple splines type based approach? i.e between x and x, then

然后

这是专用于fpga硬件,而不是通用CPU.因此,我需要自己创建函数.精度问题不那么重要了.此外,我真的负担不起一个以上的乘法电路和/或多个移位/加法器.我还想要比CORDIC函数小的东西,但实际上尺寸至关重要.

This is for dedicated fpga hardware and not a general purpose CPU. As such I need to create the function myself. Accuracy is much less of a concern. Furthermore I can't really afford more than one multiplication circuit and/or multiple shifts/adders. Also I want something much smaller than a CORDIC function, in fact size is critical.

推荐答案

这样的使用公式的策略怎么样

How about a strategy like this that uses the formula

  1. 预先计算1/ln(2)
  2. 将此常数乘以您的参数(1乘)
  3. 使用二进制移位将2提高到幂的整数部分(假设exp +尾数格式)
  4. 根据2的幂的余数(可能是第二个乘法)进行调整
  1. Precalculate 1/ln(2)
  2. Multiply this constant by your argument (1 multiplication)
  3. Use binary shifts to raise 2 to the integer portion of the power (assumes exp+mantissa format)
  4. Adjust based on the fractional power-of-2 remainder (likely a second multiplication)

我意识到这不是一个完整的解决方案,但是它只需要一个乘法就可以解决,剩下的问题可以简化为2的小数次幂,应该在硬件中更容易实现.

I realize this is not a complete solution, but it does only require a single multiplication and reduces the remaining problem to approximating a fractional power of 2, which should be easier to implement in hardware.

此外,如果您的应用程序具有足够的专业性,则可以尝试重新推导将在硬件上运行的所有数字代码,以将它们存储在基数 e 系统中,并实现浮动点硬件也可以在基本 e 中工作.那么根本就不需要转换.

Also, if your application is specialized enough, you could try to re-derive all of the numerical code that will run on your hardware to be in a base-e number system and implement your floating point hardware to work in base e as well. Then no conversion is needed at all.

这篇关于近似e ^ x的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-03 11:49