问题描述
我意识到,一般图上BFS和DFS的运行时间为O(n + m),其中n是节点数,m是边数,这是因为对于每个节点,必须考虑其邻接表。但是,当在二进制树上执行BFS和DFS时,其运行时是什么?我认为应该是O(n),因为可以从一个节点移出的边缘的可能数量是恒定的(即2)。请确认这是否是正确的理解。如果不是,那么请解释二叉树上BFS和DFS的正确时间复杂度是什么?
I realize that runtime of BFS and DFS on a generic graph is O(n+m), where n is number of nodes and m is number of edges, and this is because for each node its adjacency list must be considered. However, what is the runtime of BFS and DFS when it is executed on a binary tree? I believe it should be O(n) because the possible number of edges that can go out of a node is constant (i.e., 2). Please confirm if this is the correct understanding. If not, then please explain what is the correct time complexity of BFS and DFS on a binary tree?
推荐答案
和只是 O(| E |)
,或者您的情况是 O(m)
。
The time complexities for BFS and DFS are just O(|E|)
, or in your case, O(m)
.
在二叉树中, m
等于 n -1
,所以时间复杂度等效于 O(| V |)
。 m
是指边的总数,而不是每个顶点相邻边的平均数目。
In a binary tree, m
is equal to n-1
so the time complexity is equivalent to O(|V|)
. m
refers to the total number of edges, not the average number of adjacent edges per vertex.
这篇关于BFS和DFS在二叉树上的运行时间是否为O(N)?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!