本文介绍了Theano“预期了类似数组的对象,但找到了一个变量":使用scan& categorical_crossentropy的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试总结theano的多次损失,但我无法使其工作.我正在使用绝对交叉熵.
I'm trying to sum multiple loss in theano but I can't make it work.I'm using the categorical crossentroy.
这是我的代码:
import numpy as np
import theano
import theano.tensor as T
answers = T.ivector()
temp = T.scalar()
predictions = T.matrix()
def loss_acc(curr_ans,curr_pred, loss):
temp= T.nnet.categorical_crossentropy(curr_pred.dimshuffle('x',0), T.stack([curr_ans]))[0]
return temp + loss
outputs, updates = theano.scan(fn = loss_acc,
sequences = [answers, predictions],
outputs_info = [np.float64(0.0)],
n_steps = 5)
loss = outputs[-1]
loss_cal = theano.function(inputs = [answers, predictions], outputs = [loss])
#Here I'm just generating some random data to see if I can make the code work
max_nbr = 5
pred = []
for i in range(0, max_nbr):
temp = np.ones(8)
temp[i] = temp[i] + 5
temp = temp/sum(temp)
pred.append(temp)
answers = []
for i in range(0, max_nbr):
answers.append(pred[i].argmax())
loss = loss_cal(answers, predictions)
print(loss)
我得到的错误是
Expected an array-like object, but found a Variable:
TypeError: ('Bad input argument to theano function with name "main.py:89" at index1(0-based)', Expected an array-like object but found a Variable: maybe you are trying to call a function on a (possibly shared) variable instead of a numeric array?
我不明白为什么我的代码不起作用,有人可以向我解释吗?非常感谢!
I don't get why my code doesn't work, can someone explain it to me? Thanks a lot!
推荐答案
我发现了我的问题,这确实是一个愚蠢的问题.
I found my problem, it's really a stupid one.
loss = loss_cal(answers, predictions)
这是错误的,因为预测是theano矩阵,所以我应该一直使用pred
.
This is wrong, as predictions is the theano matrix, I should have been using pred
.
pred = []
for i in range(0, max_nbr):
temp = np.ones(8)
temp[i] = temp[i] + 5
temp = temp/sum(temp)
pred.append(temp)
现在可以与loss = loss_cal(answers, pred)
仍然感谢
It works now withloss = loss_cal(answers, pred)
Thanks anyway
这篇关于Theano“预期了类似数组的对象,但找到了一个变量":使用scan& categorical_crossentropy的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!