本文介绍了时间的关系T(n)的复杂性= T(N-1)+ T(N / 2)+ N的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

有关系

T(N)= T(N-1)+ T(N / 2)+ N

我可以先解决这个词(T(N-1)+ N),这也是为O(n ^ 2),进而解决项T(N / 2)+ O(N ^ 2)?

can I first solve the term (T(n-1) + n) which gives O(n^2), then solve the term T(n/2) + O(n^2) ?

根据主定理,也给为O(n ^ 2),或者是错误的?

according to the master theorem which also gives O(n ^ 2) or it is wrong?

推荐答案

我不认为你的做法是在一般情况下是正确的。当你扔掉T(N / 2)项计算的T(N-1)项,你最终会低估了T(N-1)项的大小的复杂性。

I don't think your approach is correct in the general case. When you throw away the T(n/2) term to calculate the complexity of the T(n-1) term you end up underestimating the size of the T(n-1) term.

有关具体的反例:

 T(n) = T(n-1) + T(n-2) + 1

您的技术也将拿出T(N)=为O(n ^ 2)这一点,但真正的复杂性是指数的。

Your technique is also going to come up with T(n) = O(n^2) for this but the real complexity is exponential.

这篇关于时间的关系T(n)的复杂性= T(N-1)+ T(N / 2)+ N的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-03 05:56