SQL解析对象的JSON数组

SQL解析对象的JSON数组

本文介绍了如何使用Spark SQL解析对象的JSON数组的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

现在具有以下JSON数据

now has JSON data as follows

{"Id":11,"data":[{"package":"com.browser1","activetime":60000},{"package":"com.browser6","activetime":1205000},{"package":"com.browser7","activetime":1205000}]}
{"Id":12,"data":[{"package":"com.browser1","activetime":60000},{"package":"com.browser6","activetime":1205000}]}
......

此JSON是应用程​​序的激活时间,其目的是分析每个应用程序的总激活时间

This JSON is the activation time of app, the purpose of which is to analyze the total activation time of each app

我使用sparK SQL解析JSON

I use sparK SQL to parse JSON

scala

val sqlContext = sc.sqlContext
val behavior = sqlContext.read.json("behavior-json.log")
behavior.cache()
behavior.createOrReplaceTempView("behavior")
val appActiveTime = sqlContext.sql ("SELECT data FROM behavior") // SQL query
appActiveTime.show (100100) // print dataFrame
appActiveTime.rdd.foreach(println) // print RDD

但是打印的dataFrame是这样的

But the printed dataFrame is like this

.

+----------------------------------------------------------------------+

| data|

+----------------------------------------------------------------------+

| [[60000, com.browser1], [12870000, com.browser]]|

| [[60000, com.browser1], [120000, com.browser]]|

| [[60000, com.browser1], [120000, com.browser]]|

| [[60000, com.browser1], [1207000, com.browser]]|

| [[120000, com.browser]]|

| [[60000, com.browser1], [1204000, com.browser5]]|

| [[60000, com.browser1], [12075000, com.browser]]|

| [[60000, com.browser1], [120000, com.browser]]|

| [[60000, com.browser1], [1204000, com.browser]]|

| [[60000, com.browser1], [120000, com.browser]]|

| [[60000, com.browser1], [1201000, com.browser]]|

| [[1200400, com.browser5]]|

| [[60000, com.browser1], [1200400, com.browser]]|

|[[60000, com.browser1], [1205000, com.browser6], [1205000, com.browser7]]|

.

RDD就是这样

.

[WrappedArray ([60000, com.browser1], [60000, com.browser1])]

[WrappedArray ([120000, com.browser])]

[WrappedArray ([60000, com.browser1], [1204000, com.browser5])]

[WrappedArray ([12075000, com.browser], [12075000, com.browser])]

.

我想将数据转换为

.

Com.browser1 60000

Com.browser1 60000

Com.browser 12075000

Com.browser 12075000

...

.

我想将RDD中每一行的数组元素变成一行.当然,它可以是另一种易于分析的结构.

I want to turn the array elements of each line in RDD into one row. Of course, it can be another structure that is easy to analyze.

因为我只学过很多Spark和Scala,所以我尝试了很长时间但失败了,所以希望您能指导我.

Because I only learn spark and Scala a lot, I have try it for a long time but fail, so I hope you can guide me.

推荐答案

从给定的json数据中,您可以使用printSchema查看并使用dataframe的架构

From your given json data you can view the schema of your dataframe with printSchema and use it

appActiveTime.printSchema()
root
 |-- data: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- activetime: long (nullable = true)
 |    |    |-- package: string (nullable = true)

由于您拥有array,因此需要explode数据并选择如下的struct字段

Since you have array you need to explode the data and select the struct field as below

import org.apache.spark.sql.functions._
appActiveTime.withColumn("data", explode($"data"))
       .select("data.*")
       .show(false)

输出:

+----------+------------+
|activetime|     package|
+----------+------------+
|     60000|com.browser1|
|   1205000|com.browser6|
|   1205000|com.browser7|
|     60000|com.browser1|
|   1205000|com.browser6|
+----------+------------+

希望这会有所帮助!

这篇关于如何使用Spark SQL解析对象的JSON数组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-02 18:07