本文介绍了df [x],df [[x]],df ['x'],df [['x']]和df.x之间的差异的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
努力理解标题中5个示例之间的区别.系列和数据框架有一些用例吗?什么时候应该使用另一个?哪个等价?
Struggling to understand the difference between the 5 examples in the title. Are some use cases for series vs. data frames? When should one be used over the other? Which are equivalent?
推荐答案
-
df[x]
—使用变量x
索引一列.返回pd.Series
-
df[[x]]
—使用变量x
索引/切片单列DataFrame.返回pd.DataFrame
-
df['x']
—索引名为"x"的列.返回pd.Series
-
df[['x']]
—索引/切片仅具有一个名为"x"的列的单列DataFrame.返回pd.DataFrame
-
df.x
—点访问符表示法,等同于df['x']
(但是,有限制(如果要成功使用点符号,则可以命名x
).返回pd.Series
df[x]
— index a column using variablex
. Returnspd.Series
df[[x]]
— index/slice a single-column DataFrame using variablex
. Returnspd.DataFrame
df['x']
— index a column named 'x'. Returnspd.Series
df[['x']]
— index/slice a single-column DataFrame having only one column named 'x'. Returnspd.DataFrame
df.x
— dot accessor notation, equivalent todf['x']
(there are, however, limitations on whatx
can be named if dot notation is to be successfully used). Returnspd.Series
使用单括号[...]
,您只能将单个列索引为系列.使用双括号[[...]]
,您可以根据需要选择任意多的列,并且这些列将作为新DataFrame的一部分返回.
With single brackets [...]
you may only index a single column out as a Series. With double brackets, [[...]]
, you may select as many columns as you need, and these columns are returned as part of a new DataFrame.
设置
df
ID x
0 0 0
1 1 15
2 2 0
3 3 0
4 4 0
5 5 15
x = 'ID'
示例
df[x]
0 0
1 1
2 2
3 3
4 4
5 5
Name: ID, dtype: int64
type(df[x])
pandas.core.series.Series
df['x']
0 0
1 15
2 0
3 0
4 0
5 15
Name: x, dtype: int64
type(df['x'])
pandas.core.series.Series
df[[x]]
ID
0 0
1 1
2 2
3 3
4 4
5 5
type(df[[x]])
pandas.core.frame.DataFrame
df[['x']]
x
0 0
1 15
2 0
3 0
4 0
5 15
type(df[['x']])
pandas.core.frame.DataFrame
df.x
0 0
1 15
2 0
3 0
4 0
5 15
Name: x, dtype: int64
type(df.x)
pandas.core.series.Series
进一步阅读
建立索引并选择数据
Further reading
Indexing and Selecting Data
这篇关于df [x],df [[x]],df ['x'],df [['x']]和df.x之间的差异的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!